University of Tasmania
Browse
147349 - single of combined ablation.pdf (2.23 MB)

Single or combined ablation of peripheral serotonin and p21 limit adipose tissue expansion and metabolic alterations in early adulthood in mice fed a normocaloric diet

Download (2.23 MB)
journal contribution
posted on 2023-05-21, 03:33 authored by Saponara, E, Chen, R, Reding, T, Zuellig, R, Darren HenstridgeDarren Henstridge, Graf, R, Sabrina SondaSabrina Sonda
Identifying the fundamental molecular factors that drive weight gain even in the absence of hypercaloric food intake, is crucial to enable development of novel treatments for the global pandemic of obesity. Here we investigated both adipose tissue-specific and systemic events that underlie the physiological weight gain occurring during early adulthood in mice fed a normocaloric diet. In addition, we used three different genetic models to identify molecular factors that promote physiological weight gain during normocaloric and hypercaloric diets. We demonstrated that normal physiological weight gain was accompanied by an increase in adipose tissue mass and the presence of cellular and metabolic signatures typically found during obesity, including adipocyte hypertrophy, macrophage recruitment into visceral fat and perturbed glucose metabolism. At the molecular level, this was associated with an increase in adipose tissue tryptophan hydroxylase 1 (Tph1) transcripts, the key enzyme responsible for the synthesis of peripheral serotonin. Genetic inactivation of Tph1 was sufficient to limit adipose tissue expansion and associated metabolic alterations. Mechanistically, we discovered that Tph1 inactivation resulted in down-regulation of cyclin-dependent kinase inhibitor p21Waf1/Cip1 expression. Single or double ablation of Tph1 and p21 were equally effective in preventing adipocyte expansion and systemic perturbation of glucose metabolism, upon both normocaloric and hypercaloric diets. Our results suggest that serotonin and p21 act as a central molecular determinant of weight gain and associated metabolic alterations, and highlights the potential of targeting these molecules as a pharmacologic approach to prevent the development of obesity.

History

Publication title

PLoS One

Volume

16

Issue

8

Article number

0255687

Number

0255687

Pagination

1-17

ISSN

1932-6203

Department/School

School of Health Sciences

Publisher

Public Library of Science

Place of publication

United States

Rights statement

© 2021. The Authors. This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License, (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Repository Status

  • Open

Socio-economic Objectives

Expanding knowledge in the biological sciences

Usage metrics

    University Of Tasmania

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC