eCite Digital Repository

Impaired postprandial skeletal muscle vascular responses to a mixed meal challenge in normoglycaemic people with a parent with type 2 diabetes


Russell, RD and Roberts-Thomson, KM and Hu, D and Greenaway, T and Betik, AC and Parker, L and Sharman, JE and Richards, SM and Rattigan, S and Premilovac, D and Wadley, GD and Keske, MA, Impaired postprandial skeletal muscle vascular responses to a mixed meal challenge in normoglycaemic people with a parent with type 2 diabetes, Diabetologia ISSN 0012-186X (2021) [Refereed Article]

Copyright Statement

Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

DOI: doi:10.1007/s00125-021-05572-7


Aims/hypothesis: Microvascular blood flow (MBF) increases in skeletal muscle postprandially to aid in glucose delivery and uptake in muscle. This vascular action is impaired in individuals who are obese or have type 2 diabetes. Whether MBF is impaired in normoglycaemic people at risk of type 2 diabetes is unknown. We aimed to determine whether apparently healthy people at risk of type 2 diabetes display impaired skeletal muscle microvascular responses to a mixed-nutrient meal.

Methods: In this cross-sectional study, participants with no family history of type 2 diabetes (FH-) for two generations (n = 18), participants with a positive family history of type 2 diabetes (FH+; i.e. a parent with type 2 diabetes; n = 16) and those with type 2 diabetes (n = 12) underwent a mixed meal challenge (MMC). Metabolic responses (blood glucose, plasma insulin and indirect calorimetry) were measured before and during the MMC. Skeletal muscle large artery haemodynamics (2D and Doppler ultrasound, and Mobil-O-graph) and microvascular responses (contrast-enhanced ultrasound) were measured at baseline and 1 h post MMC.

Results: Despite normal blood glucose concentrations, FH+ individuals displayed impaired metabolic flexibility (reduced ability to switch from fat to carbohydrate oxidation vs FH-; p < 0.05) during the MMC. The MMC increased forearm muscle microvascular blood volume in both the FH- (1.3-fold, p < 0.01) and FH+ (1.3-fold, p < 0.05) groups but not in participants with type 2 diabetes. However, the MMC increased MBF (1.9-fold, p < 0.01), brachial artery diameter (1.1-fold, p < 0.01) and brachial artery blood flow (1.7-fold, p < 0.001) and reduced vascular resistance (0.7-fold, p < 0.001) only in FH- participants, with these changes being absent in FH+ and type 2 diabetes. Participants with type 2 diabetes displayed significantly higher vascular stiffness (p < 0.001) compared with those in the FH- and FH+ groups; however, vascular stiffness did not change during the MMC in any participant group.

Conclusions/interpretation: Normoglycaemic FH+ participants display impaired postprandial skeletal muscle macro- and microvascular responses, suggesting that poor vascular responses to a meal may contribute to their increased risk of type 2 diabetes. We conclude that vascular insulin resistance may be an early precursor to type 2 diabetes in humans, which can be revealed using an MMC.

Item Details

Item Type:Refereed Article
Keywords:endothelium, human, imaging, insulin sensitivity, resistance
Research Division:Biomedical and Clinical Sciences
Research Group:Cardiovascular medicine and haematology
Research Field:Cardiology (incl. cardiovascular diseases)
Objective Division:Health
Objective Group:Clinical health
Objective Field:Diagnosis of human diseases and conditions
UTAS Author:Russell, RD (Dr Ryan Russell)
UTAS Author:Hu, D (Mr Donghua Hu)
UTAS Author:Greenaway, T (Dr Tim Greenaway)
UTAS Author:Sharman, JE (Professor James Sharman)
UTAS Author:Richards, SM (Dr Stephen Richards)
UTAS Author:Rattigan, S (Professor Stephen Rattigan)
UTAS Author:Premilovac, D (Dr Dino Premilovac)
UTAS Author:Keske, MA (Dr Michelle Keske)
ID Code:147040
Year Published:2021
Web of Science® Times Cited:7
Deposited By:Menzies Institute for Medical Research
Deposited On:2021-10-12
Last Modified:2022-08-25

Repository Staff Only: item control page