University of Tasmania
Browse
146815 - Characterization and genomic analysis of the first Oceanospirillum phage.pdf (4.82 MB)

Characterization and genomic analysis of the first Oceanospirillum phage, vB_OliS_GJ44, representing a novel siphoviral cluster

Download (4.82 MB)
journal contribution
posted on 2023-05-21, 02:48 authored by Zhang, W, Liang, Y, Zheng, K, Gu, C, Liu, Y, Wang, Z, Zhang, X, Shao, H, Jiang, Y, Guo, C, He, H, Wang, H, Sung, YY, Mok, WJ, Zhang, Y, Andrew McMinnAndrew McMinn, Wang, M

Background

Marine bacteriophages play key roles in the community structure of microorganisms, biogeochemical cycles, and the mediation of genetic diversity through horizontal gene transfer. Recently, traditional isolation methods, complemented by high-throughput sequencing metagenomics technology, have greatly increased our understanding of the diversity of bacteriophages. Oceanospirillum, within the order Oceanospirillales, are important symbiotic marine bacteria associated with hydrocarbon degradation and algal blooms, especially in polar regions. However, until now there has been no isolate of an Oceanospirillum bacteriophage, and so details of their metagenome has remained unknown.

Results

Here, we reported the first Oceanospirillum phage, vB_OliS_GJ44, which was assembled into a 33,786 bp linear dsDNA genome, which includes abundant tail-related and recombinant proteins. The recombinant module was highly adapted to the host, according to the tetranucleotides correlations. Genomic and morphological analyses identified vB_OliS_GJ44 as a siphovirus, however, due to the distant evolutionary relationship with any other known siphovirus, it is proposed that this virus could be classified as the type phage of a new Oceanospirivirus genus within the Siphoviridae family. vB_OliS_GJ44 showed synteny with six uncultured phages, which supports its representation in uncultured environmental viral contigs from metagenomics. Homologs of several vB_OliS_GJ44 genes have mostly been found in marine metagenomes, suggesting the prevalence of this phage genus in the oceans.

Conclusions

These results describe the first Oceanospirillum phage, vB_OliS_GJ44, that represents a novel viral cluster and exhibits interesting genetic features related to phage–host interactions and evolution. Thus, we propose a new viral genus Oceanospirivirus within the Siphoviridae family to reconcile this cluster, with vB_OliS_GJ44 as a representative member.

History

Publication title

BMC Genomics

Volume

22

Article number

675

Number

675

Pagination

1-16

ISSN

1471-2164

Department/School

Institute for Marine and Antarctic Studies

Publisher

Biomed Central Ltd

Place of publication

Middlesex House, 34-42 Cleveland St, London, England, W1T 4Lb

Rights statement

Copyright 2021 The Authors. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/

Repository Status

  • Open

Socio-economic Objectives

Coastal or estuarine biodiversity

Usage metrics

    University Of Tasmania

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC