University of Tasmania
Browse

File(s) under permanent embargo

Biomass-derived carbon nanospheres decorated by manganese oxide nanosheets, intercalated into polypyrrole, as an inside-needle capillary adsorption trap sorbent for the analysis of linear alkylbenzenes

journal contribution
posted on 2023-05-21, 02:21 authored by Darabi, J, Alireza GhiasvandAlireza Ghiasvand, Paul HaddadPaul Haddad

Abstract

Carbon nanospheres (CNSs) were derived hydrothermally from biomass (orange peels) and decorated by manganese dioxide (MnO2) nanosheets. The MnO2/CNSs nanocomposite was intercalated into polypyrrole (PPy) during flow-through in-situ electropolymerization of pyrrole on the surface of the inner wall of a stainless-steel needle to prepare an inside-needle capillary adsorption trap (INCAT) device. The surface morphology, thermogravimetric behavior, sorption characteristics, and structure of the MnO2/CNSs@PPy nanocomposite were characterized using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), energy dispersive X-ray analysis (EDX), nitrogen physisorption by the Brunauer-Emmett-Teller (BET) method, dynamic light scattering (DLS) size distribution, and Fourier-transform infrared spectrometry (FT-IR). The INCAT device was coupled with GC-FID and applied for dynamic headspace analysis of linear alkyl benzenes (LABs) in wastewater samples. The effective experimental variables on the extraction efficiency was optimized using a central composite design (CCD) based on response surface methodology (RSM). Under the optimal conditions, the limits of detection (LODs) were in the range of 0.5–1.0 ng mL−1. The calibration plots were linear over the range of 0.01–10 μg mL−1. The relative standard deviations (RSDs%) for intra-day, inter-day, and inter-INCAT precision were calculated 5.3–8.3%, 9.4–13.5%, and 13.6–16.9%, respectively. The developed technique was employed successfully for the analysis of LABs in water and wastewater samples with average recovery values ranging from 92 to 109%. A single INCAT device was used more than 90 times without significant change in its extraction capability.

History

Publication title

Talanta

Volume

233

Article number

122583

Number

122583

Pagination

1-9

ISSN

0039-9140

Department/School

School of Natural Sciences

Publisher

Elsevier Science Bv

Place of publication

Po Box 211, Amsterdam, Netherlands, 1000 Ae

Rights statement

© 2021 Elsevier B.V. All rights reserved.

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC