University of Tasmania
Browse

File(s) under permanent embargo

Three-dimensional propulsion characteristics of counter-phase oscillating dual-foil propulsor

journal contribution
posted on 2023-05-21, 02:12 authored by Wang, J, Liu, P, Christopher ChinChristopher Chin, He, G, Mo, W
A three-dimensional computational study was conducted on the propulsive performance of auto-pitch wing-in- ground effect oscillating foil propulsors (APWIGs) using an unsteady Reynolds Averaged Navier-Stokes solver. This novel propulsor is characterized as the combination of dual-foil configuration and spring-based pitching motion. Both the counter-phase oscillating dual-foil arrangement with produced wing-in-ground (WIG) effect and the auto-pitch mechanism based on attached torsional springs are expected to be favorable for performance improvement. To clearly identify the role of two concerned parameters for APWIGs, the study was divided into two parts of simulations to examine aspect ratio and torsional spring stiffness separately. Firstly, the effect of aspect ratio on the hydrodynamic characteristics was investigated by a fully prescribed oscillating dual-foil configuration. The current computations covering a wide range of aspect ratio from 1 to 10 indicated that the three-dimensional effect tends to dominate the propulsion hydrodynamics with a value of lower than 2. The maximum drop of 14.85% in propulsive efficiency due to the finite-span effect was found at the aspect ratio of 1, while a moderate aspect ratio of 4 leads to an acceptable efficiency loss of 3.22%. Secondly, the three- dimensional hydro-elasticity characteristics of APWIGs as a function of spring stiffness were studied by employing a fixed aspect ratio. A relatively low aspect ratio in which the finite-span effect is still dominant was selected to compare the three-dimensional simulations with two-dimensional predictions. It was observed that the torsional spring stiffness has a significant influence on both hydrodynamic performance and vortex structures of finite-span APWIGs. There exists an optimum spring stiffness for finite-span APWIGs corresponding to the highest efficiency, which resembles the hydro-elasticity characteristics of two-dimensional cases. An averaged efficiency loss of around 10% was reported owing to the low-aspect-ratio effect for three-dimensional APWIGs.

History

Publication title

Ocean Engineering

Volume

238

Article number

109761

Number

109761

Pagination

1-18

ISSN

0029-8018

Department/School

Australian Maritime College

Publisher

Elsevier LtD

Place of publication

United Kingdom

Rights statement

© 2021 Elsevier Ltd. All rights reserved.

Repository Status

  • Restricted

Socio-economic Objectives

Maritime

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC