University of Tasmania
Browse

File(s) under permanent embargo

Global sensitivity analysis for uncertainty quantification in fire spread models

journal contribution
posted on 2023-05-21, 02:05 authored by Ujjwal K C, Jagannath Aryal, Saurabh GargSaurabh Garg, Hilton, J
Environmental models involve inherent uncertainties, the understanding of which is required for use by practitioners. One method of uncertainty quantification is global sensitivity analysis (GSA), which has been extensively used in environmental modeling. The suitability of GSA methods depends on the model, implementation, and computational complexity. Thus, we present a comparative analysis of different GSA methods (Morris, Sobol, FAST, and PAWN) applied to empirical fire spread models (Dry Eucalypt and Rothermel) and explain their implications. GSA methods such as PAWN, may not be able to explain all the interactions whereas methods such as Sobol can result in high computational costs for models with several parameters. We found that the Morris or the PAWN method should be prioritized over the Sobol and the FAST methods for a balanced trade-off between convergence and robustness under computational constraints. Additionally, the Sobol method should be chosen for more detailed sensitivity information.

Funding

CSIRO Data61

History

Publication title

Environmental Modelling and Software

Volume

143

Article number

105110

Number

105110

Pagination

1-13

ISSN

1364-8152

Department/School

School of Information and Communication Technology

Publisher

Elsevier Sci Ltd

Place of publication

The Boulevard, Langford Lane, Kidlington, Oxford, England, Oxon, Ox5 1Gb

Rights statement

© 2021 Elsevier Ltd. All rights reserved.

Repository Status

  • Restricted

Socio-economic Objectives

Climatological hazards (e.g. extreme temperatures, drought and wildfires)

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC