University of Tasmania
Browse

File(s) under permanent embargo

Genome-wide association study of myrtle rust (Austropuccinia psidii) resistance in Eucalyptus obliqua (subgenus Eucalyptus)

journal contribution
posted on 2023-05-21, 01:34 authored by Yong, WTL, Ades, PK, Runa, FA, Bossinger, G, Sandhu, KS, Bradley PottsBradley Potts, Tibbits, JFG
Myrtle rust (caused by Austropuccinia psidii Beenken) is exotic to Australia, yet specific resistance is present in a range of naïve myrtaceous host plants. Resistance to myrtle rust is primarily quantitative in nature and controlled by multiple interacting loci. We undertook a genome-wide association study (GWAS) to discover relationships between nuclear genomic sequence variation and multiple aspects of resistance to A. psidii in Eucalyptus obliqua, a representative species from subgenus Eucalyptus. Sequence variation was assessed with respect to numeric severity, binary symptomatic, hypersensitive, and pustulation responses to inoculation of seedlings with A. psidii. A total of 1.13 million, single-nucleotide polymorphisms (SNPs) were tested for association with the rust resistance responses of 637 phenotyped E. obliqua seedlings, each from different, single mother tree seedlots. Thirty-three highly significant SNP-trait associations were detected, of which 26 associated with the binary symptomatic/asymptomatic response to A. psidii. Comparison of the genomic position of these SNPs with rust resistance loci (Ppr1-5), previously reported in species from subgenus Symphyomyrtus, suggested that several were positioned near the major Ppr1 locus and other Ppr loci. This study provides the first integrated genomic view of A. psidii resistance across the Eucalyptus subgenera and provides the foundation for discovering key resistance genes for use in marker-based resistance breeding.

Funding

Australian Research Council

Forest & Wood Products Australia Limited

Forestry Tasmania

Forico Pty Ltd

Greening Australia (TAS) Ltd

JM Roberts Charitable Trust

Sustainable Forest Management Pty Ltd

History

Publication title

Tree Genetics and Genomes

Volume

17

Article number

31

Number

31

Pagination

1-18

ISSN

1614-2942

Department/School

School of Natural Sciences

Publisher

Springer

Place of publication

Germany

Rights statement

Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Repository Status

  • Restricted

Socio-economic Objectives

Hardwood plantations; Native forests