University of Tasmania
Browse
145973 - Handheld laser scanning detects spatiotemporal differences in the development of structural traits among species in restoration plantings.pdf (1.5 MB)

Handheld laser scanning detects spatiotemporal differences in the development of structural traits among species in restoration plantings

Download (1.5 MB)
journal contribution
posted on 2023-05-21, 01:33 authored by Camarretta, N, Peter HarrisonPeter Harrison, Arko LucieerArko Lucieer, Bradley PottsBradley Potts, Davidson, N, Mark HuntMark Hunt
A major challenge in ecological restoration is assessing the success of restoration plantings in producing habitats that provide the desired ecosystem functions and services. Forest structural complexity and biomass accumulation are key measures used to monitor restoration success and are important factors determining animal habitat availability and carbon sequestration. Monitoring their development through time using traditional field measurements can be costly and impractical, particularly at the landscape-scale, which is a common requirement in ecological restoration. We explored the application of proximal sensing technology as an alternative to traditional field surveys to capture the development of key forest structural traits in a restoration planting in the Midlands of Tasmania, Australia. We report the use of a hand-held laser scanner (ZEB1) to measure annual changes in structural traits at the tree-level, in a mixed species common-garden experiment from seven- to nine-years after planting. Using very dense point clouds, we derived estimates of multiple structural traits, including above ground biomass, tree height, stem diameter, crown dimensions, and crown properties. We detected annual increases in most LiDAR-derived traits, with individual crowns becoming increasingly interconnected. Time by species interaction were detected, and were associated with differences in productivity between species. We show the potential for remote sensing technology to monitor temporal changes in forest structural traits, as well as to provide base-line measures from which to assess the restoration trajectory towards a desired state.

Funding

Australian Research Council

Forest & Wood Products Australia Limited

Forestry Tasmania

Forico Pty Ltd

Greening Australia (TAS) Ltd

JM Roberts Charitable Trust

Sustainable Forest Management Pty Ltd

History

Publication title

Remote Sensing

Volume

13

Issue

9

Article number

1706

Number

1706

Pagination

1-16

ISSN

2072-4292

Department/School

School of Natural Sciences

Publisher

MDPI

Place of publication

Switzerland

Rights statement

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) license (https://creativecommons.org/licenses/by/

Repository Status

  • Open

Socio-economic Objectives

Rehabilitation or conservation of terrestrial environments; Terrestrial biodiversity