University of Tasmania
Browse

File(s) under permanent embargo

Improved hydrodynamic performance of a collective and cyclic pitch propeller by numerical evaluation of the blade design

journal contribution
posted on 2023-05-21, 00:54 authored by Dubois, A, Zhi Quan LeongZhi Quan Leong, Hung NguyenHung Nguyen, Jonathan BinnsJonathan Binns
The collective and cyclic pitch propeller (CCPP) is a novel concept designed to propel and manoeuvre autonomous underwater vehicles (AUVs). Collective pitch control governs the generated thrust, while through cyclic pitch control a manoeuvring force/side-force is generated. Recent work concluded that new solutions are needed to achieve large side-forces without compromising the observed phase shift. In this paper, increasing the blade surface area is rationalised as the most effective pathway to achieve improved CCPP performance. A three-dimensional numerical RANS-based periodic numerical model was used to evaluate three alternative blade designs. Clear performance improvements were realised by the new blade design, manifested in the ability to generate larger side-forces, both absolute and relative based on the actual surface area, at much smaller phase shifts. A performance improvement relation was established, stating that optimal improvement is realised by increasing both the blade's surface area and aspect ratio. At higher aspect ratios, the side-force is produced in a more efficient manner, both from a general force behaviour and a side-force force generation perspective. Finally, an important note was made regarding the future introduction of blade twist in order to address an observed effect on the ‘neutral’ pitch angle.

History

Publication title

Ocean Engineering: An International Journal of Research and Development

Volume

220

Article number

108404

Number

108404

Pagination

1-13

ISSN

0029-8018

Department/School

Australian Maritime College

Publisher

Pergamon-Elsevier Science Ltd

Place of publication

The Boulevard, Langford Lane, Kidlington, Oxford, England, Ox5 1Gb

Rights statement

© 2020 Elsevier Ltd. All rights reserved.

Repository Status

  • Restricted

Socio-economic Objectives

Autonomous water vehicles; Expanding knowledge in engineering

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC