University of Tasmania
Browse

File(s) under permanent embargo

Maximising the efficiency of Menard pressuremeter testing in cohesive materials by a cookie-cutter drilling technique

journal contribution
posted on 2023-05-21, 00:42 authored by Ali TolooiyanAli Tolooiyan, Ashley DysonAshley Dyson, Karami, M, Shaghaghi, T, Ghadrdan, M, Tang, Z

Menard pressuremeter testing has been widely used in geotechnical engineering applications for 40 years and is an important technique in determining in-situ horizontal stress distributions. In this study, Menard pressuremeter testing is combined with a “cookie-cutter” insertion technique to determine horizontal stresses for a soft-rock in an operational Australian mine. The method presents an alternative to the Self-Bored Pressuremeter, with cookie-cutter drill rods allowing for sample recovery and further laboratory testing. The method accommodates for the presence of gravel and hard layered materials that present a risk of damage to cutting shoes of Self-Bored Pressuremeter devices. The combination of a sonic drill rig, coupled with the cookie cutter rods produces a close tolerance pocket resulting in “pseudo self boring pressuremeter tests”. The undrained shear strength, unload-reload shear modulus and in-situ horizontal stress are presented from pressuremeter tests conducted in the region for the first time. The undrained shear strength was observed in the range of 0.47–0.57 MPa, the unload-reload shear modulus between 17.43 and 18.25 MPa, the lift-off pressure in the range of 0.35–0.61 MPa. The K0 of coal was equal to 1, with interseam materials ranging from 2.1 to 3.5. Results of the cookie-cutter insertion method are compared with conventional drilling methods, with the cookie-cutter insertion test providing results in good agreement with both advanced triaxial laboratory tests and FEM numerical analysis. Cookie-cutter pressuremeter tests were conducted on cohesive soils at Australia's second-largest open-pit mine, with pressuremeter test results presented for Victorian brown coal for the first time.

History

Publication title

Engineering Geology

Volume

287

Article number

106096

Number

106096

Pagination

1-16

ISSN

0013-7952

Department/School

School of Engineering

Publisher

Elsevier Science Bv

Place of publication

Po Box 211, Amsterdam, Netherlands, 1000 Ae

Rights statement

© 2021 Elsevier B.V. All rights reserved.

Repository Status

  • Restricted

Socio-economic Objectives

Geological hazards (e.g. earthquakes, landslides and volcanic activity)

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC