eCite Digital Repository

Maximising the efficiency of Menard pressuremeter testing in cohesive materials by a cookie-cutter drilling technique


Tolooiyan, A and Dyson, AP and Karami, M and Shaghaghi, T and Ghadrdan, M and Tang, Z, Maximising the efficiency of Menard pressuremeter testing in cohesive materials by a cookie-cutter drilling technique, Engineering Geology, 287 Article 106096. ISSN 0013-7952 (2021) [Refereed Article]

Copyright Statement

© 2021 Elsevier B.V. All rights reserved.

DOI: doi:10.1016/j.enggeo.2021.106096


Menard pressuremeter testing has been widely used in geotechnical engineering applications for 40 years and is an important technique in determining in-situ horizontal stress distributions. In this study, Menard pressuremeter testing is combined with a "cookie-cutter" insertion technique to determine horizontal stresses for a soft-rock in an operational Australian mine. The method presents an alternative to the Self-Bored Pressuremeter, with cookie-cutter drill rods allowing for sample recovery and further laboratory testing. The method accommodates for the presence of gravel and hard layered materials that present a risk of damage to cutting shoes of Self-Bored Pressuremeter devices. The combination of a sonic drill rig, coupled with the cookie cutter rods produces a close tolerance pocket resulting in "pseudo self boring pressuremeter tests". The undrained shear strength, unload-reload shear modulus and in-situ horizontal stress are presented from pressuremeter tests conducted in the region for the first time. The undrained shear strength was observed in the range of 0.47–0.57 MPa, the unload-reload shear modulus between 17.43 and 18.25 MPa, the lift-off pressure in the range of 0.35–0.61 MPa. The K0 of coal was equal to 1, with interseam materials ranging from 2.1 to 3.5. Results of the cookie-cutter insertion method are compared with conventional drilling methods, with the cookie-cutter insertion test providing results in good agreement with both advanced triaxial laboratory tests and FEM numerical analysis. Cookie-cutter pressuremeter tests were conducted on cohesive soils at Australia's second-largest open-pit mine, with pressuremeter test results presented for Victorian brown coal for the first time.

Item Details

Item Type:Refereed Article
Keywords:pressuremeter test, in-situ stress, soft rock, Victorian brown coal, cohesive soil, cookie-cutter
Research Division:Engineering
Research Group:Civil engineering
Research Field:Civil geotechnical engineering
Objective Division:Environmental Policy, Climate Change and Natural Hazards
Objective Group:Natural hazards
Objective Field:Geological hazards (e.g. earthquakes, landslides and volcanic activity)
UTAS Author:Tolooiyan, A (Dr Ali Tolooiyan)
UTAS Author:Dyson, AP (Dr Ashley Dyson)
ID Code:145288
Year Published:2021
Deposited By:Engineering
Deposited On:2021-07-14
Last Modified:2021-11-22

Repository Staff Only: item control page