University of Tasmania
Browse

File(s) under permanent embargo

Petrology, geochemistry, and the origin of sulfide-bearing and PGE-mineralized troctolites from the Konnikov Zone in the Yoko-Dovyren layered intrusion

journal contribution
posted on 2023-05-20, 23:43 authored by Ariskin, AA, Leonid Danyushevsky, Fiorentini, M, Nikolaev, GS, Kislov, EV, Pshenitsyn, IV, Yapaskurt, VO, Sobolev, SN
The exposures, structure, mineralogy, and composition of unusual sulfide-bearing troctolites from the Yoko-Dovyren layered intrusion in the northern Baikal area (Russia) are described in detail for the first time. The troctolite succession (referred to as the Konnikov Zone) is characterized by the presence of pegmatoid poikilite sulfides and sulfide dissemination with diverse PGE mineralization. The former are dominated by pyrrhotite-troilite products of exsolution of monosulfide solid solution (mss), and the latter is composed mostly of cubanite-chalcopyrite assemblages produced from an intermediate Ni-Cu-Fe solid solution (iss). The positive covariations between the contents of sulfur and chalcogens (Se, Te) along with the sublinear dependence of the Pd, Pt, Au, and Cu contents on the Te contents indicate a sulfide control of the distribution of these elements in troctolite cumulates. According to the sulfide-normalized contents of these elements in rocks, the average “100% sulfides” in the samples are subdivided into two groups: (1) strongly depleted in PGE, Au, Cu, and Te and (2) with 10–50-fold enrichment in them. This division is consistent with the morphological and mineralogical differences between the groups. Of genetic significance is the fact that the mss assemblages are somewhat poorer in PGE and Te than the primitive sulfides from the Dovyren basal zone, whereas the assemblages with predominant copper sulfides are significantly richer in these elements. This fact is confirmed by LA-ICP-MS data on the trace-element composition of the sulfide phases. The established specific features indicate a limited scale of fractionation of immiscible sulfides during the solidification of the troctolite cumulates. The formation of PGE- and Te-rich assemblages can be related to the course of crystallization of a sulfide precursor similar to the most primitive sulfide liquid. This is consistent with the known laws of crystallization of sulfide systems and explains the abnormally high S/Te ratios in pegmatoid troctolites enriched in mss products. Thus, sulfide melts act as an agent that transports precious metals and chalcogens in the troctolite cumulate area. This conclusion requires specification of the physical mechanisms and parameters (rheology, permeability, wettability by sulfides of different phases, etc.) of the cumulus medium favoring the spatial separation of a monosulfide solution and Cu-containing PGE-rich fractions with their subsequent infiltration and deposition at the boundaries of critical low permeability.

Funding

Australian Research Council

AMIRA International Ltd

ARC C of E Industry Partner $ to be allocated

Anglo American Exploration Philippines Inc

AngloGold Ashanti Australia Limited

Australian National University

BHP Billiton Ltd

Barrick (Australia Pacific) PTY Limited

CSIRO Earth Science & Resource Engineering

Mineral Resources Tasmania

Minerals Council of Australia

Newcrest Mining Limited

Newmont Australia Ltd

Oz Minerals Australia Limited

Rio Tinto Exploration

St Barbara Limited

Teck Cominco Limited

University of Melbourne

University of Queensland

Zinifex Australia Ltd

History

Publication title

Russian Geology and Geophysics

Volume

61

Issue

5-6

Pagination

611-633

ISSN

1068-7971

Department/School

School of Natural Sciences

Publisher

Elsevier Science Bv

Place of publication

Netherlands

Rights statement

Copyright 2020, V.S. Sobolev IGM, Siberian Branch of the RAS

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the earth sciences