eCite Digital Repository

Eighteen year record of circum-Antarctic landfast sea ice distribution allows detailed baseline characterisation, reveals trends and variability

Citation

Fraser, AD and Massom, RA and Handcock, MS and Reid, P and Ohshima, KI and Raphael, MN and Cartwright, J and Klekociuk, AR and Wang, Z and Porter-Smith, R, Eighteen year record of circum-Antarctic landfast sea ice distribution allows detailed baseline characterisation, reveals trends and variability, Cryosphere, 15, (11) pp. 5061-5077. ISSN 1994-0416 (2021) [Refereed Article]


Preview
PDF (Published version)
8Mb
  

Copyright Statement

© Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 International (CC BY 4.0) License.(https://creativecommons.org/licenses/by/4.0/)

DOI: doi:10.5194/tc-15-5061-2021

Abstract

Landfast sea ice (fast ice) is an important though poorly understood component of the cryosphere on the Antarctic continental shelf, where it plays a key role in atmosphere–ocean–ice-sheet interaction and coupled ecological and biogeochemical processes. Here, we present a first in-depth baseline analysis of variability and change in circum-Antarctic fast-ice distribution (including its relationship to bathymetry), based on a new high-resolution satellite-derived time series for the period 2000 to 2018. This reveals (a) an overall trend of −882±824 km2 yr−1 (−0.19±0.18 % yr−1) and (b) eight distinct regions in terms of fast-ice coverage and modes of formation. Of these, four exhibit positive trends over the 18-year period and four negative. Positive trends are seen in East Antarctica and in the Bellingshausen Sea, with this region claiming the largest positive trend of +1198±359 km2 yr−1 (+1.10±0.35 % yr−1). The four negative trends predominantly occur in West Antarctica, with the largest negative trend of −1206±277 km2 yr−1 (−1.78±0.41 % yr−1) occurring in the Victoria and Oates Land region in the western Ross Sea. All trends are significant. This new baseline analysis represents a significant advance in our knowledge of the current state of both the global cryosphere and the complex Antarctic coastal system, which are vulnerable to climate variability and change. It will also inform a wide range of other studies.

Item Details

Item Type:Refereed Article
Keywords:Antarctic landfast sea ice
Research Division:Earth Sciences
Research Group:Physical geography and environmental geoscience
Research Field:Glaciology
Objective Division:Environmental Management
Objective Group:Management of Antarctic and Southern Ocean environments
Objective Field:Antarctic and Southern Ocean ice dynamics
UTAS Author:Fraser, AD (Dr Alex Fraser)
UTAS Author:Massom, RA (Dr Robert Massom)
UTAS Author:Reid, P (Dr Phillip Reid)
UTAS Author:Klekociuk, AR (Dr Andrew Klekociuk)
UTAS Author:Wang, Z (Dr Zhaohui Wang)
UTAS Author:Porter-Smith, R (Dr Rick Smith)
ID Code:144083
Year Published:2021
Web of Science® Times Cited:13
Deposited By:Australian Antarctic Program Partnership
Deposited On:2021-04-21
Last Modified:2022-08-29
Downloads:9 View Download Statistics

Repository Staff Only: item control page