eCite Digital Repository

Mineralogy and origin of aerosol from an arc basaltic eruption: case study of Tolbachik volcano, Kamchatka


Zelenski, M and Kamenetsky, VS and Taran, Yu and Kovalskii, AM, Mineralogy and origin of aerosol from an arc basaltic eruption: case study of Tolbachik volcano, Kamchatka, Geochemistry, Geophysics, Geosystems, 21, (2) Article e2019GC008802. ISSN 1525-2027 (2020) [Refereed Article]

PDF (Published version)

Copyright Statement

2020. American Geophysical Union.

DOI: doi:10.1029/2019GC008802


Intense emission of volcanic aerosol accompanied the 20122013 basaltic effusive eruption of Tolbachik volcano, Kamchatka. The aerosols sampled contain sulfuric acid droplets, glassy particles, and 70 mineral phases. All aerosol particles may be classified by their origin. The fragmentation aerosol includes magma fragments: silicate glass clasts, silicate microspheres, and small phenocrysts (olivine, pyroxene, and magnetite). The alteration aerosol comprises particles of quenched silicate melt covered with secondary minerals (fluorides, sulfates, and oxides/hydroxides of rock-forming elements) and fragments of altered rocks composed solely of secondary minerals. The condensation aerosol dominated the mass during the later stages of the eruption when the explosive activity had ceased, and was characterized by the greatest variety of particle compositions. Na-K sulfate and Fe (III) oxide comprised more than 95% of the solid fraction of the condensation aerosol. The remaining 5% was represented by native elements (Au, Ag-Pt alloy, and Pt); sulfides of Fe, Cu, Ag, and Re; oxides and hydroxides of Al, Fe, Cu, Zn, Mo, W, Ta, and Zr; halides of Al, Mg, Na, K, Ca, Cd, Pb, Ag, and Tl; and sulfates of Na, K, Pb, Ca, and Ba; the only silicate was As-bearing orthoclase. Droplets of H2SO4 formed the liquid phase of the condensation aerosol. Some of the aerosol components, such as magnetite spherules or phosphate-carbonate-fluorite association, likely had a nonvolcanic origin (country rocks and wood fly ash). The volcanic aerosols and their contained minerals, discharged at Tolbachik and elsewhere, result in a physical and chemical effect on the environment in the region of such volcanoes.

Item Details

Item Type:Refereed Article
Keywords:volcanic aerosol, fragmentation, alteration, condensation, mineral composition, Tolbachik
Research Division:Earth Sciences
Research Group:Geology
Research Field:Volcanology
Objective Division:Environmental Policy, Climate Change and Natural Hazards
Objective Group:Natural hazards
Objective Field:Geological hazards (e.g. earthquakes, landslides and volcanic activity)
UTAS Author:Kamenetsky, VS (Professor Vadim Kamenetsky)
ID Code:143725
Year Published:2020
Web of Science® Times Cited:4
Deposited By:CODES ARC
Deposited On:2021-03-30
Last Modified:2021-09-27
Downloads:5 View Download Statistics

Repository Staff Only: item control page