University of Tasmania
Browse
143725 - Mineralogy and origin of aerosol from an arc basaltic eruption.pdf (4.84 MB)

Mineralogy and origin of aerosol from an arc basaltic eruption: case study of Tolbachik volcano, Kamchatka

Download (4.84 MB)
journal contribution
posted on 2023-05-20, 22:27 authored by Zelenski, M, Vadim Kamenetsky, Taran, Yu, Kovalskii, AM
Intense emission of volcanic aerosol accompanied the 2012–2013 basaltic effusive eruption of Tolbachik volcano, Kamchatka. The aerosols sampled contain sulfuric acid droplets, glassy particles, and 70 mineral phases. All aerosol particles may be classified by their origin. The fragmentation aerosol includes magma fragments: silicate glass clasts, silicate microspheres, and small phenocrysts (olivine, pyroxene, and magnetite). The alteration aerosol comprises particles of quenched silicate melt covered with secondary minerals (fluorides, sulfates, and oxides/hydroxides of rock-forming elements) and fragments of altered rocks composed solely of secondary minerals. The condensation aerosol dominated the mass during the later stages of the eruption when the explosive activity had ceased, and was characterized by the greatest variety of particle compositions. Na-K sulfate and Fe (III) oxide comprised more than 95% of the solid fraction of the condensation aerosol. The remaining 5% was represented by native elements (Au, Ag-Pt alloy, and Pt); sulfides of Fe, Cu, Ag, and Re; oxides and hydroxides of Al, Fe, Cu, Zn, Mo, W, Ta, and Zr; halides of Al, Mg, Na, K, Ca, Cd, Pb, Ag, and Tl; and sulfates of Na, K, Pb, Ca, and Ba; the only silicate was As-bearing orthoclase. Droplets of H2SO4 formed the liquid phase of the condensation aerosol. Some of the aerosol components, such as magnetite spherules or phosphate-carbonate-fluorite association, likely had a nonvolcanic origin (country rocks and wood fly ash). The volcanic aerosols and their contained minerals, discharged at Tolbachik and elsewhere, result in a physical and chemical effect on the environment in the region of such volcanoes.

History

Publication title

Geochemistry, Geophysics, Geosystems

Volume

21

Article number

e2019GC008802

Number

e2019GC008802

Pagination

1-30

ISSN

1525-2027

Department/School

School of Natural Sciences

Publisher

Amer Geophysical Union

Place of publication

2000 Florida Ave Nw, Washington, USA, Dc, 20009

Rights statement

© 2020. American Geophysical Union.

Repository Status

  • Open

Socio-economic Objectives

Geological hazards (e.g. earthquakes, landslides and volcanic activity)

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC