University of Tasmania
Browse
143508 - Fragmentation theory reveals processes controlling iceberg size.pdf (709.19 kB)

Fragmentation theory reveals processes controlling iceberg size distributions

Download (709.19 kB)
journal contribution
posted on 2023-05-20, 22:04 authored by Astrom, J, Susan CookSusan Cook, Enderlin, EM, Sutherland, DA, Mazur, A, Glasser, N
Iceberg calving strongly controls glacier mass loss, but the fracture processes leading to iceberg formation are poorly understood due to the stochastic nature of calving. The size distributions of icebergs produced during the calving process can yield information on the processes driving calving and also affect the timing, magnitude, and spatial distribution of ocean fresh water fluxes near glaciers and ice sheets. In this study, we apply fragmentation theory to describe key calving behaviours, based on observational and modelling data from Greenland and Antarctica. In both regions, iceberg calving is dominated by elastic-brittle fracture processes, where distributions contain both exponential and power law components describing large-scale uncorrelated fracture and correlated branching fracture, respectively. Other size distributions can also be observed. For Antarctic icebergs, distributions change from elastic-brittle type during ‘stable’ calving to one dominated by grinding or crushing during ice shelf disintegration events. In Greenland, we find that iceberg fragment size distributions evolve from an initial elastic-brittle type distribution near the calving front, into a steeper grinding/crushing-type power law along-fjord. These results provide an entirely new framework for understanding controls on iceberg calving and how calving may react to climate forcing.

History

Publication title

Journal of Glaciology

Volume

67

Issue

264

Pagination

603-612

ISSN

0022-1430

Department/School

Institute for Marine and Antarctic Studies

Publisher

Int Glaciol Soc

Place of publication

Lensfield Rd, Cambridge, England, Cb2 1Er

Rights statement

Copyright 2021 the authors. Licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/

Repository Status

  • Open

Socio-economic Objectives

Antarctic and Southern Ocean ice dynamics; Expanding knowledge in the earth sciences

Usage metrics

    University Of Tasmania

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC