eCite Digital Repository

Evolution of kimberlite magmas in the crust: A case study of groundmass and mineral-hosted inclusions in the Mark kimberlite (Lac de Gras, Canada)


Abersteiner, A and Kamenetsky, VS and Goemann, K and Kjarsgaard, BA and Fedortchouk, Y and Ehrig, K and Kamenetsky, M, Evolution of kimberlite magmas in the crust: A case study of groundmass and mineral-hosted inclusions in the Mark kimberlite (Lac de Gras, Canada), Lithos, 372-373 Article 105690. ISSN 0024-4937 (2020) [Refereed Article]

Copyright Statement

© 2020 Elsevier B.V. All rights reserved.

DOI: doi:10.1016/j.lithos.2020.105690


Kimberlites are the surface manifestation of deeply-derived (>150 km) and rapidly ascended magmas. Fresh kimberlite rocks are exceptionally rare, as most of them are invariably modified by pervasive deuteric and/or post-magmatic fluids that overprint the original mineralogy. In this study, we examined fresh archetypal kimberlite from the Mark pipe (Lac de Gras, Canada), which is characterised by well-preserved olivine and groundmass minerals. The sequence of crystallisation of the parental melt and its major compositional features, including oxygen fugacity, were reconstructed using textural relationships between magmatic minerals, their zoning patterns and crystal/melt/fluid inclusions. Crystal and multiphase primary, pseudosecondary and secondary melt/fluid inclusions in olivine, Cr-diopside, spinel, perovskite, phlogopite/kinoshitalite, apatite and calcite preserve a record of different stages of kimberlite melt evolution. Melt/fluid inclusions are generally more depleted in silica and more enriched in alkalis (K, Na), alkali-earth (Ba, Sr) and halogens (Cl, F) relative to the whole-rock composition of the Mark kimberlite. These melt/fluid inclusion compositions, in combination with presence of elevated CaO (up to 1.73 wt%), in Mg-rich olivine rinds, crystallisation of groundmass kinoshitalite, carbonates (calcite, Sr-Ba-bearing) and alkali-enriched rims around apatite suggest that there was progressive enrichment in CO2, alkalis and halogens in the evolving parental melt.

The Mark kimberlite groundmass is characterised by the following stages of in-situ crystallisation: (1) olivine rims around xenocrystic cores + Cr-spinel/TIMAC. (2) Mg-rich olivine rinds around olivine rims/cores + MUM-spinel (followed by pleonaste and Mg-magnetite) + monticellite (+ partial resorption of olivine, along with the formation of ferropericlase and CO2 as a result of decarbonation reactions) + perovskite + apatite. (3) Olivine outmost rinds, which are coeval with phlogopite/kinoshitalite + apatite + sulphides + carbonate (calcite, Ba-Sr-Na-bearing varieties). In addition, oxygen fugacity of the Mark kimberlite was constrained by olivine-chromite, perovskite and monticellite oxygen barometry and showed that the parental melt became progressively more oxidised in response to fractional crystallisation. (4) Deuteric (i.e. late-stage magmatic) and/or post-magmatic (i.e. external fluids) alteration of magmatic minerals (e.g., olivine, monticellite, ferropericlase) and crystallisation of mesostasis serpentine, K-bearing chlorite and brucite (i.e. replacement of ferropericlase). The absence of any alkali (Na, K) and halogen (F, Cl) rich groundmass minerals in the Mark kimberlite may be attributed to these elements becoming concentrated in the late-stage melt where they potentially formed unstable, water-soluble carbonates (such as those observed in melt inclusions). Consequently, these minerals were most likely removed from the groundmass by deuteric and/or post-magmatic alteration.

Item Details

Item Type:Refereed Article
Keywords:Mark kimberlite, Lac de Gras, melt Inclusions, crystallisation sequence
Research Division:Earth Sciences
Research Group:Geochemistry
Research Field:Inorganic geochemistry
Objective Division:Mineral Resources (Excl. Energy Resources)
Objective Group:Mineral exploration
Objective Field:Diamond exploration
UTAS Author:Abersteiner, A (Mr Adam Abersteiner)
UTAS Author:Kamenetsky, VS (Professor Vadim Kamenetsky)
UTAS Author:Goemann, K (Dr Karsten Goemann)
UTAS Author:Kamenetsky, M (Dr Maya Kamenetsky)
ID Code:143472
Year Published:2020
Web of Science® Times Cited:8
Deposited By:CODES ARC
Deposited On:2021-03-19
Last Modified:2021-09-23

Repository Staff Only: item control page