eCite Digital Repository

Trends in Ocean S-Isotopes May Be Influenced by Major LIP Events


Large, RR and Steadman, JA and Mukherjee, I and Corkrey, R and Sack, P and Ireland, TR, Trends in Ocean S-Isotopes May Be Influenced by Major LIP Events, Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes, American Geophysical Union and John Wiley & Sons, RE Ernst, AJ Dickson, & A Bekker (ed), United States, pp. 341-376. ISBN 9781119507451 (2021) [Research Book Chapter]


Copyright Statement

Copyright 2021 The Authors. Co-published 2021 by the American Geophysical Union and John Wiley and Sons, Inc

DOI: doi:10.1002/9781119507444.ch15


Mega volcanic eruptions associated with the formation of Large Igneous Provinces (LIPS) pump vast amounts of carbon dioxide and sulfur-rich gases into the atmosphere and stratosphere with the potential to totally change the chemistry of the global ocean. Here we investigate the sedimentary pyrite sulfur isotope record of black shales through time and demonstrate two coherent populations termed P1 and P2. Population P1 dominates the Archean pyrites, has a mean of δ34S = +3.7, standard deviation of 5.3, and is considered to represent S of mantle origin. Population P2 appears toward the start of the Proterozoic, dominates the Phanerozoic, has a mean around +25 and standard deviation of 13.5, and is considered to represent S of seawater sulfate origin. Population P1 can be identified in sedimentary pyrite at certain times in the Proterozoic and Phanerozoic, which correspond, within error, with the timing of 25 major LIP events. Our data suggest that at regular times through the Proterozoic, coinciding with major LIP events, the oceans contained a mixture of seawater sulfate and dissolved mantle sulfide derived from the LIPs. LA-ICP-MS analyses of the sedimentary pyrite indicate that metals, particularly gold, nickel, cobalt, and PGE were also enriched in the oceans at these times. The long periods between major LIP eruptions enabled the oceans to return to a seawater sulfate background equilibrium with a decrease in the mantle-derived metals.

Item Details

Item Type:Research Book Chapter
Keywords:global ocean, Large Igneous Provinces, mega volcanic eruptions, S-isotopes, sedimentary pyrite sulfur isotope
Research Division:Earth Sciences
Research Group:Geochemistry
Research Field:Isotope geochemistry
Objective Division:Expanding Knowledge
Objective Group:Expanding knowledge
Objective Field:Expanding knowledge in the earth sciences
UTAS Author:Large, RR (Professor Ross Large)
UTAS Author:Steadman, JA (Mr Jeffrey Steadman)
UTAS Author:Mukherjee, I (Dr Indrani Mukherjee)
UTAS Author:Corkrey, R (Dr Ross Corkrey)
ID Code:143441
Year Published:2021
Deposited By:CODES ARC
Deposited On:2021-03-17
Last Modified:2022-12-22
Downloads:17 View Download Statistics

Repository Staff Only: item control page