University of Tasmania
Browse
143138 - The Framework for Ice Sheet -Ocean Coupling (FISOC).pdf (1.38 MB)

The Framework for Ice Sheet–Ocean Coupling (FISOC) V1.1

Download (1.38 MB)
journal contribution
posted on 2023-05-20, 21:33 authored by Gladstone, R, Benjamin Galton-FenziBenjamin Galton-Fenzi, David Gwyther, Zhou, Q, Hattermann, T, Zhao, C, Jong, L, Xia, Y, Petrakopoulos, K, Zwinger, T, Shapero, D, Moore, J
A number of important questions concern processes at the margins of ice sheets where multiple components of the Earth system, most crucially ice sheets and oceans, interact. Such processes include thermodynamic interaction at the ice–ocean interface, the impact of meltwater on ice shelf cavity circulation, the impact of basal melting of ice shelves on grounded ice dynamics and ocean controls on iceberg calving. These include fundamentally coupled processes in which feedback mechanisms between ice and ocean play an important role. Some of these mechanisms have major implications for humanity, most notably the impact of retreating marine ice sheets on the global sea level. In order to better quantify these mechanisms using computer models, feedbacks need to be incorporated into the modelling system. To achieve this, ocean and ice dynamic models must be coupled, allowing runtime information sharing between components. We have developed a flexible coupling framework based on existing Earth system coupling technologies. The open-source Framework for Ice Sheet–Ocean Coupling (FISOC) provides a modular approach to coupling, facilitating switching between different ice dynamic and ocean components. FISOC allows fully synchronous coupling, in which both ice and ocean run on the same time step, or semi-synchronous coupling in which the ice dynamic model uses a longer time step. Multiple regridding options are available, and there are multiple methods for coupling the sub-ice-shelf cavity geometry. Thermodynamic coupling may also be activated. We present idealized simulations using FISOC with a Stokes flow ice dynamic model coupled to a regional ocean model. We demonstrate the modularity of FISOC by switching between two different regional ocean models and presenting outputs for both. We demonstrate conservation of mass and other verification steps during evolution of an idealized coupled ice–ocean system, both with and without grounding line movement.

History

Publication title

Geoscientific Model Development

Volume

14

Pagination

889-905

ISSN

1991-959X

Department/School

Institute for Marine and Antarctic Studies

Publisher

Copernicus GmbH

Place of publication

Germany

Rights statement

© Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 International (CC BY 4.0) License. (https://creativecommons.org/licenses/by/4.0/)

Repository Status

  • Open

Socio-economic Objectives

Other environmental policy, climate change and natural hazards not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC