University of Tasmania
Browse

File(s) under permanent embargo

Biogeochemical characteristics of eddies in the East Australian Current depend on eddy type, history and location

journal contribution
posted on 2023-05-20, 21:09 authored by Chen, X, Christina SchallenbergChristina Schallenberg, Helen PhillipsHelen Phillips, Zanna ChaseZanna Chase

Mesoscale eddies are ubiquitous in the East Australian Current (EAC), a nutrient poor western boundary current, and exert considerable impact on the biogeochemical characteristics of the region. However, in-situ biogeochemical studies of these eddies are relatively rare. Here we combine ship-based and satellite measurements to characterize the physical and biogeochemical properties of three EAC eddies – one cyclone and two anticyclones – in the austral fall of 2018. Deep Chlorophyll Maxima (DCM) were observed in the two northernmost eddies, with Chlorophyll-a concentrations ranging from 0.4 to 1.3 mg m-3 and generally decreasing with increasing depth of the DCM. The anticyclone farthest south, which was also the oldest observed eddy, was more productive and contained higher biomass than the northern eddies, including the cyclone. Deeper mixed layers in this anticyclone suggest that surface cooling resulting from poleward travel and seasonal cooling might have led to increased convection and an injection of nutrients. All eddies were nitrogen limited, and nitrogen fixation likely occurred in the surface waters of the two northernmost eddies. Where DCM were present, their depth was well explained as a consequence of an optimisation of light and nitrogen supply by phytoplankton. We observed prominent primary nitrite maxima (PNM) in the eddies. Their depths were highly correlated with, and consistently below, the depths of DCM, indicating that incomplete nitrate reduction by phytoplankton under low-light conditions was likely the main driver for their production. To our knowledge, this is the first description of PNM in eddies of the EAC.

History

Publication title

Journal of Marine Systems

Volume

216

Article number

103512

Number

103512

Pagination

1-14

ISSN

0924-7963

Department/School

Institute for Marine and Antarctic Studies

Publisher

Elsevier Science Bv

Place of publication

Po Box 211, Amsterdam, Netherlands, 1000 Ae

Rights statement

Copyright 2021 Elsevier B.V. All rights reserved

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the earth sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC