eCite Digital Repository

SMOaaS: a Scalable Matrix Operation as a Service model in Cloud


K C, U and Battula, SK and Garg, S and Naha, RK and Patwary, MAK and Brown, A, SMOaaS: a Scalable Matrix Operation as a Service model in Cloud, Journal of Supercomputing pp. 1-21. ISSN 0920-8542 (2020) [Refereed Article]

Copyright Statement

Springer Science+Business Media, LLC, part of Springer Nature 2020

DOI: doi:10.1007/s11227-020-03400-0


Matrix operations are fundamental to a wide range of scientific applications such as Graph Theory, Linear Equation System, Image Processing, Geometric Optics, and Probability Analysis. As the workload in these applications has increased, the sizes of matrices involved have also significantly increased. Parallel execution of matrix operations in existing cluster-based systems performs effectively for relatively small matrices but significantly suffers as matrices become larger due to limited resources. Cloud Computing offers scalable resources to handle this limitation; however, the benefits of having access to almost-infinite scalable resources in the Cloud also come with challenges of ensuring time and resource-efficient matrix operations. To the best of our knowledge, there is no specific Cloud service that optimizes the efficiency of matrix operations on Cloud infrastructure. To address this gap and offer convenient service of matrix operations, the paper proposes a novel scalable service framework called Scalable Matrix Operation as a Service. Our framework uses Dynamic Matrix Partition techniques, based on matrix operation and sizes, to achieve efficient work distribution, and scales based on demand to achieve time and resource-efficient operations. The framework also embraces the basic features of security, fault tolerance, and reliability. Experimental results show that the adopted dynamic partitioning technique ensures faster and better performance when compared to the existing static partitioning technique.

Item Details

Item Type:Refereed Article
Keywords:matrix operation, scalability, service framework, cloud solution, cloud computing
Research Division:Information and Computing Sciences
Research Group:Distributed computing and systems software
Research Field:Cloud computing
Objective Division:Information and Communication Services
Objective Group:Information systems, technologies and services
Objective Field:Computer systems
UTAS Author:K C, U (Mr Ujjwal K C)
UTAS Author:Battula, SK (Mr Sudheer Kumar Battula)
UTAS Author:Garg, S (Dr Saurabh Garg)
UTAS Author:Naha, RK (Mr Ranesh Kumar Naha)
UTAS Author:Patwary, MAK (Mr Md Anwarul Patwary)
UTAS Author:Brown, A (Mr Alexander Brown)
ID Code:142781
Year Published:2020
Deposited By:Information and Communication Technology
Deposited On:2021-02-11
Last Modified:2021-05-25

Repository Staff Only: item control page