University of Tasmania
Browse
142581 - Genesis and decay of mesoscale baroclinic eddies in the seasonally ice-covered.pdf (3.16 MB)

Genesis and decay of mesoscale baroclinic eddies in the seasonally ice-covered interior Arctic Ocean

Download (3.16 MB)
journal contribution
posted on 2023-05-20, 20:31 authored by Meneghello, G, Marshall, J, Lique, C, Isachsen, PE, Edward DoddridgeEdward Doddridge, Campin, J-M, Regan, H, Talandier, C
Observations of ocean currents in the Arctic interior show a curious, and hitherto unexplained, vertical and temporal distribution of mesoscale activity. A marked seasonal cycle is found close to the surface: strong eddy activity during summer, observed from both satellites and moorings, is followed by very quiet winters. In contrast, subsurface eddies persist all year long within the deeper halocline and below. Informed by baroclinic instability analysis, we explore the origin and evolution of mesoscale eddies in the seasonally ice-covered interior Arctic Ocean. We find that the surface seasonal cycle is controlled by friction with sea ice, dissipating existing eddies and preventing the growth of new ones. In contrast, subsurface eddies, enabled by interior potential vorticity gradients and shielded by a strong stratification at a depth of approximately 50 m, can grow independently of the presence of sea ice. A high-resolution pan-Arctic ocean model confirms that the interior Arctic basin is baroclinically unstable all year long at depth. We address possible implications for the transport of water masses between the margins and the interior of the Arctic basin, and for climate models’ ability to capture the fundamental difference in mesoscale activity between ice-covered and ice-free regions.

History

Publication title

Journal of Physical Oceanography

Volume

51

Pagination

115-129

ISSN

0022-3670

Department/School

Institute for Marine and Antarctic Studies

Publisher

Amer Meteorological Soc

Place of publication

45 Beacon St, Boston, USA, Ma, 02108-3693

Rights statement

Copyright 2020 American Meteorological Society (AMS). For permission to reuse any portion of this work, please contact permissions@ametsoc.org. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act (17 U.S. Code §?107) or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC § 108) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. All AMS journals and monograph publications are registered with the Copyright Clearance Center (https://www.copyright.com). Additional details are provided in the AMS Copyright Policy statement, available on the AMS website (https://www.ametsoc.org/PUBSCopyrightPolicy).

Repository Status

  • Open

Socio-economic Objectives

Oceanic processes (excl. in the Antarctic and Southern Ocean)

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC