eCite Digital Repository

Efficient regional scale 3D potential field geophysical modelling to redefine the geometry of granite bodies beneath prospective, geologically complex, northwest Tasmania

Citation

Eshaghi, E and Reading, AM and Roach, M and Duffett, ML and Bombardieri, D and Cracknell, MJ and Everard, JL, Efficient regional scale 3D potential field geophysical modelling to redefine the geometry of granite bodies beneath prospective, geologically complex, northwest Tasmania, Ore Geology Reviews pp. 1-14. ISSN 0169-1368 (2020) [Refereed Article]

Copyright Statement

Copyright 2020 Elsevier B.V.

DOI: doi:10.1016/j.oregeorev.2020.103799

Abstract

In this study, a regional model that defines the three-dimensional geometry of the subsurface geology beneath the complex, prospective northwestern Tasmania has been developed. This has been achieved using a series of potential field inversions constrained by surface geology, geological sections, seismic interpretations and a newly extended petrophysical dataset. Three major episodes of granitic magmatism are preserved in Tasmania: in the Neoproterozoic, Cambrian and Devonian. Granite bodies are hence considered important indicators of mineralization for explorers in an area of challenging vegetation, topography and cover sequences. Forward modelling and property-based inversions of the pre-existing geological model show that the previously interpreted subsurface geometry is not compatible with potential field data. Four sub-regions displayed a large discrepancy between calculated and observed data. This study redefines the subsurface geometries of these sub-regions through individual geometry inversions. The density and magnetic susceptibility ranges of units are further refined through property inversions. The modified geometry of the Devonian granites in the four sub-regions may be summarized as follows: 1) the Housetop Granite is relatively thin (≤5 km thickness), whereas 2) the Heemskirk and Meredith Granites are very thick and granite extends to a shallower depth between these bodies than previously interpreted. This region between plutons is thus a more prospective region than previously thought. 3) For the first time, an intrusive body underlying the eastern part of the Rocky Cape Group has been identified. Its petrophysical properties are similar to that of a granite, and its top is interpreted at a depth of >3 km. This interpreted low density (granitic) unit may be either Neoproterozoic or Devonian. 4) A new non-magnetic, low density Cambrian granite, with a minimum burial depth of 1 km, is also modelled in 3D, within the Mount Read Volcanics, in the south of the study area. Our approach, whereby sub-regions are identified for more detailed modelling, enables new constraints to be introduced in a computationally efficient way, and has general application to refining the geometry of key structures in prospective regions.

Item Details

Item Type:Refereed Article
Keywords:Western Tasmania, Devonian granites, potential field data, 3D modelling, inversion, petrophysics
Research Division:Earth Sciences
Research Group:Geophysics
Research Field:Geophysics not elsewhere classified
Objective Division:Mineral Resources (Excl. Energy Resources)
Objective Group:Mineral exploration
Objective Field:Mineral exploration not elsewhere classified
UTAS Author:Eshaghi, E (Mr Esmaeil Eshaghi)
UTAS Author:Reading, AM (Professor Anya Reading)
UTAS Author:Roach, M (Dr Michael Roach)
UTAS Author:Duffett, ML (Mr Mark Duffett)
UTAS Author:Bombardieri, D (Dr Daniel Bombardieri)
UTAS Author:Cracknell, MJ (Dr Matthew Cracknell)
UTAS Author:Everard, JL (Mr John Everard)
ID Code:141315
Year Published:2020
Deposited By:CODES ARC
Deposited On:2020-10-14
Last Modified:2020-11-23
Downloads:0

Repository Staff Only: item control page