eCite Digital Repository

NextGen molecular barcoding of larval grouper diet in an extensive green-water pond system

Citation

Dennis, LP and Anderson, K and Wylie, M and In, VV and Nocillado, J and Elizur, A, NextGen molecular barcoding of larval grouper diet in an extensive green-water pond system, Aquaculture, 531 Article 735971. ISSN 0044-8486 (2020) [Refereed Article]

Copyright Statement

Copyright 2020 Elsevier B.V.

DOI: doi:10.1016/j.aquaculture.2020.735971

Abstract

Molecular barcoding and next generation amplicon sequencing were used to investigate the diet of the larvae of two species: tiger (Epinephelus fuscoguttatus) and hybrid (E. lanceolatus × E. fuscoguttatus) grouper. Larvae were reared in open green-water ponds. These ponds had natural populations of wild zooplankton, and were also seeded with additional zooplankton. Zooplankton from water samples and larvae were collected daily for the first 12 days post hatch (dph) for hybrid grouper and the first 6 dph for tiger grouper. Next generation (NextGen) sequencing with degenerate cytochrome oxidase 1 oligonucleotide primers was performed on all samples. Resulting sequences suggest that both grouper species predated heavily on calanoid copepods – especially at first feeding and while still drawing energy from endogenous supplies. In addition, tiger grouper consumed mussel trochophores as a first feed. Grouper larvae diversified their diets at 6 dph and hybrid grouper were found to be consuming an unidentified insect as their primary food source from this point. Diets further diversified at 10 dph and the first substantial representation of ‘traditional’ aquaculture live feed was seen at 12 dph with the appearance of Artemia. Rotifers (Brachionus spp.) were consumed at a low level by tiger grouper larvae and at a negligible level by hybrid grouper despite daily addition to the pond systems. This study confirms that within the first 12 dph calanoid copepods are the key prey zooplankton for grouper larvae, and demonstrates that NextGen sequencing is a powerful tool for diet assessment in aquaculture.

Item Details

Item Type:Refereed Article
Keywords:barcoding, larvae, nutrition, zooplankton, green-water culture, grouper, next-generation sequencing, aquaculture
Research Division:Agricultural, Veterinary and Food Sciences
Research Group:Fisheries sciences
Research Field:Fish physiology and genetics
Objective Division:Expanding Knowledge
Objective Group:Expanding knowledge
Objective Field:Expanding knowledge in the biological sciences
UTAS Author:Anderson, K (Dr Kelli Anderson)
ID Code:141238
Year Published:2020
Deposited By:Fisheries and Aquaculture
Deposited On:2020-10-07
Last Modified:2021-03-18
Downloads:0

Repository Staff Only: item control page