University of Tasmania
Browse
140961 - Transcriptomic profiling in fins of Atlantic salmon parasitized with sea lice.pdf (44.5 MB)

Transcriptomic profiling in fins of Atlantic salmon parasitized with sea lice: evidence for an early imbalance between chalimus-induced immunomodulation and the host’s defense response

Download (44.5 MB)
journal contribution
posted on 2023-05-20, 17:55 authored by Umasuthan, N, Xue, X, Caballero-Solares, A, Kumar, S, Westcott, JD, Chen, Z, Fast, MD, Skugor, S, Barbara NowakBarbara Nowak, Taylor, RG, Rise, ML
Parasitic sea lice (e.g., Lepeophtheirus salmonis) cause costly outbreaks in salmon farming. Molecular insights into parasite-induced host responses will provide the basis for improved management strategies. We investigated the early transcriptomic responses in pelvic fins of Atlantic salmon parasitized with chalimus I stage sea lice. Fin samples collected from non-infected (i.e., pre-infected) control (PRE) and at chalimus-attachment sites (ATT) and adjacent to chalimus-attachment sites (ADJ) from infected fish were used in profiling global gene expression using 44K microarrays. We identified 6568 differentially expressed probes (DEPs, FDR < 5%) that included 1928 shared DEPs between ATT and ADJ compared to PRE. The ATT versus ADJ comparison revealed 90 DEPs, all of which were upregulated in ATT samples. Gene ontology/pathway term network analyses revealed profound changes in physiological processes, including extracellular matrix (ECM) degradation, tissue repair/remodeling and wound healing, immunity and defense, chemotaxis and signaling, antiviral response, and redox homeostasis in infected fins. The QPCR analysis of 37 microarray-identified transcripts representing these functional themes served to confirm the microarray results with a significant positive correlation (p < 0.0001). Most immune/defense-relevant transcripts were downregulated in both ATT and ADJ sites compared to PRE, suggesting that chalimus exerts immunosuppressive effects in the salmon’s fins. The comparison between ATT and ADJ sites demonstrated the upregulation of a suite of immune-relevant transcripts, evidencing the salmon’s attempt to mount an anti-lice response. We hypothesize that an imbalance between immunomodulation caused by chalimus during the early phase of infection and weak defense response manifested by Atlantic salmon makes it a susceptible host for L. salmonis.

History

Publication title

International Journal of Molecular Sciences

Volume

21

Issue

7

Article number

2417

Number

2417

Pagination

1-45

ISSN

1422-0067

Department/School

Institute for Marine and Antarctic Studies

Publisher

Molecular Diversity Preservation International

Place of publication

Matthaeusstrasse 11, Basel, Switzerland, Ch-4057

Rights statement

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Repository Status

  • Open

Socio-economic Objectives

Aquaculture fin fish (excl. tuna)

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC