University of Tasmania
Browse

File(s) under permanent embargo

Conversion of unstable compounds can contribute to the auxin pool during sample preparation

journal contribution
posted on 2023-05-20, 17:32 authored by Ariane Gelinas-MarionAriane Gelinas-Marion, David NicholsDavid Nichols, John RossJohn Ross
Auxin is a powerful regulator of plant growth and development (Heisler and Byrne, 2020). Accurate quantification of the main form of auxin, indole-3-acetic acid (IAA), is therefore essential for the study of auxin biology. Synthetic forms of the IAA-related compounds indole-3-pyruvic acid (IPyA) and indole-3-acetaldehyde (IAAld) have been shown to convert nonenzymatically to IAA, particularly in aqueous environments (Ernstsen et al., 1986; Tam and Normanly, 1998; Quittenden et al., 2009; Dai et al., 2013). These compounds are present in plants, and IPyA is now considered the main intermediate between tryptophan and IAA (Zhao, 2018). If substantial amounts of IPyA and/or IAAld convert to IAA during sample preparation, IAA quantification may be severely compromised. Here, a cysteamine-based derivatization method for converting IPyA and IAAld to stable forms (Novák et al., 2012) was used to demonstrate that endogenous IAA-related compounds can convert nonenzymatically to IAA during pea (Pisum sativum) and Arabidopsis (Arabidopsis thaliana) sample preparation. In derivatized samples, quantified IAA content was up to 40% lower than in underivatized controls. As a result, we recommend that harvested samples be derivatized soon after the completion of a short extraction period.

History

Publication title

Plant Physiology

Volume

183

Issue

4

Pagination

1432-1434

ISSN

0032-0889

Department/School

School of Natural Sciences

Publisher

Amer Soc Plant Biologists

Place of publication

15501 Monona Drive, Rockville, USA, Md, 20855

Rights statement

Copyright 2020 American Society of Plant Biologists

Repository Status

  • Restricted

Socio-economic Objectives

Environmentally sustainable plant production not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC