University of Tasmania
Browse

File(s) under permanent embargo

A double-thermostad warm-core ring of the Gulf Stream

journal contribution
posted on 2023-05-20, 17:08 authored by Belkin, I, Annie FoppertAnnie Foppert, Rossby, T, Fontana, S, Kincaid, C

An unusual double-thermostad warm-core ring of the Gulf Stream was discovered in the Slope Sea, south of Georges Bank, during the R/V Endeavor cruise 578 in May 2016. The ring’s stratification was peculiar as it included two thermostads at, respectively, 100–200 m (core T = 18.14°C, S = 36.52) and 250–500 m (core T = 16.70°C, S = 36.35). Extensive use of satellite data (SST imagery and SSH maps) allowed the life history of this ring to be reconstructed, with independent SST and SSH data mutually corroborating each other. The double-thermostad ring was formed by vertical alignment of two preexisting warm-core anticyclonic rings of the Gulf Stream. The first ring spawned by the Gulf Stream in February has cooled by ~2°C before merging in April with the second ring spawned by the Gulf Stream in March. During vertical alignment of these rings, the warmer ring overrode the colder ring, thereby forming the double-thermostad ring surveyed in May 2016. From ADCP sections through the ring, the upper and lower thermostads had different core relative vorticities of −0.65f and −0.77f, respectively, where f is the local Coriolis parameter. An in-depth literature survey has confirmed that this is the first report of a double-thermostad warm-core ring of the Gulf Stream and one of the best-documented cases of vertical alignment of two eddies ever observed in the World Ocean.

History

Publication title

Journal of Physical Oceanography

Volume

50

Pagination

489-507

ISSN

0022-3670

Department/School

Institute for Marine and Antarctic Studies

Publisher

Amer Meteorological Soc

Place of publication

45 Beacon St, Boston, USA, Ma, 02108-3693

Rights statement

copyright 2020 American Meteorological Society

Repository Status

  • Restricted

Socio-economic Objectives

Understanding climate change not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC