eCite Digital Repository

Effect of rock mass permeability and rock fracture leak-off coefficient on the pore water pressure distribution in a fractured slope


Shaghaghi, T and Ghadrdan, M and Tolooiyan, A, Effect of rock mass permeability and rock fracture leak-off coefficient on the pore water pressure distribution in a fractured slope, Simulation Modelling Practice and Theory, 105 Article 102167. ISSN 1569-190X (2020) [Refereed Article]

Copyright Statement

Copyright 2020 Elsevier Science BV

DOI: doi:10.1016/j.simpat.2020.102167


The reliable assessment of the stability of saturated slopes becomes a challenging task when slopes are consisting of discontinuous materials and containing pre-existing joints. The discontinuous nature of the slopesí material could increase the overall permeability of the slope, while existing joints facilitate groundwater leakage through the joint surfaces into the slope which subsequently exerts a major impact on deformation and the effective stress distribution. This paper aims to study the Pore Water Pressure (PWP) distribution changes in a saturated fractured slope by conducting advanced coupled pore fluid diffusion and stress-strain analyses, while investigating the sensitivity of results to the variation of permeability and leakage properties of fracture surfaces. Modelling of jointed slopes is carried out using the e-Xtended Finite Element Method (XFEM) in conjunction with the Finite Element Method (FEM). In this study, the fluid flow inside the joint is the major focus at which the constitutive response of the fluid inside the joint considers both tangential and normal flows. To demonstrate the state-of-the-art simulation technique presented in this paper, simulation of a fractured slope at the second largest open-pit mine in Australia is performed as a case study. This study shows the effect of a variable leak-off coefficient of the joint surfaces and the permeability magnitude on the pore water pressure distribution.

Item Details

Item Type:Refereed Article
Keywords:XFEM, fractured slope, permeability, leak-off coefficient, coupled pore fluid diffusion/stress analysis
Research Division:Engineering
Research Group:Civil engineering
Research Field:Civil geotechnical engineering
Objective Division:Expanding Knowledge
Objective Group:Expanding knowledge
Objective Field:Expanding knowledge in engineering
UTAS Author:Tolooiyan, A (Dr Ali Tolooiyan)
ID Code:140451
Year Published:2020
Web of Science® Times Cited:2
Deposited By:Engineering
Deposited On:2020-08-18
Last Modified:2021-02-11

Repository Staff Only: item control page