University of Tasmania
Browse

File(s) under permanent embargo

A multi-agent system for modelling preference-based complex influence diffusion in social networks

journal contribution
posted on 2023-05-20, 12:11 authored by Li, W, Quan BaiQuan Bai, Zhang, M
Influence diffusion modelling, analysis and applications in the preference-aware context draw tremendous attention to both researchers and practitioners. Most contemporary studies typically model the influence-diffusion pheromone from a centralized perspective. In this paper, we model the bi-directional influence propagation in directed weighted networks in a distributed manner with the consideration of user preference by facilitating Agent-Based Modelling. In the proposed model, each individual’s personalized features and the social context are modelled based on the underlying social theories, i.e. social influence and the homophily effect. In addition, the model is capable of not only producing a certain range of dynamical behaviours based on different parameter constellation but also analyzing the evolutionary trends of a social network and capturing the dynamics in the environment. Another attractive feature is the training capability of agents, which enables them to adapt the personalized features. Comparing with traditional approaches, the proposed model is more suitable for handling the complex nature of influence diffusion, and demonstrates the advantages in simulating the real-world influence diffusion. Furthermore, we propose a novel seeding algorithm for influence maximization, named Enhanced Evolution-Based Backward selection. The algorithm utilizes the advantages offered by the proposed agent-based model. The experimental results reveal that the algorithm is superior to those state-of-the-art algorithms for influence maximization.

History

Publication title

The Computer Journal

Volume

62

Pagination

430-447

ISSN

0010-4620

Department/School

School of Information and Communication Technology

Publisher

Oxford University Press

Place of publication

Oxford, England

Rights statement

Copyright 2018 The British Computer Society

Repository Status

  • Restricted

Socio-economic Objectives

Information systems, technologies and services not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC