University of Tasmania
Browse
137850 - Nitrogen sufficiency enhances thermal tolerance in habitat-forming kelp.pdf (1.82 MB)

Nitrogen sufficiency enhances thermal tolerance in habitat-forming kelp: implications for acclimation under thermal stress

Download (1.82 MB)
journal contribution
posted on 2023-05-20, 11:40 authored by Fernandez, PA, Gaitan-Espitia, JD, Leal, PP, Matthias SchmidMatthias Schmid, Revill, AT, Catriona HurdCatriona Hurd

Local and global changes associated with anthropogenic activities are impacting marine and terrestrial ecosystems. Macroalgae, especially habitat-forming species like kelp, play critical roles in temperate coastal ecosystems. However, their abundance and distribution patterns have been negatively affected by warming in many regions around the globe. Along with global change, coastal ecosystems are also impacted by local drivers such as eutrophication. The interaction between global and local drivers might modulate kelp responses to environmental change. This study examines the regulatory effect of NO3 on the thermal plasticity of the giant kelp Macrocystis pyrifera. To do this, thermal performance curves (TPCs) of key temperature-dependant traits–growth, photosynthesis, NO3 assimilation and chlorophyll a fluorescence–were examined under nitrate replete and deplete conditions in a short-term incubation. We found that thermal plasticity was modulated by NO3 but different thermal responses were observed among traits. Our study reveals that nitrogen, a local driver, modulates kelp responses to high seawater temperatures, ameliorating the negative impacts on physiological performance (i.e. growth and photosynthesis). However, this effect might be species-specific and vary among biogeographic regions – thus, further work is needed to determine the generality of our findings to other key temperate macroalgae that are experiencing temperatures close to their thermal tolerance due to climate change.

History

Publication title

Scientific Reports

Volume

10

Article number

3186

Number

3186

Pagination

1-12

ISSN

2045-2322

Department/School

Institute for Marine and Antarctic Studies

Publisher

Nature Publishing Group

Place of publication

United Kingdom

Rights statement

Copyright 2020 The Authors. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/

Repository Status

  • Open

Socio-economic Objectives

Ecosystem adaptation to climate change

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC