eCite Digital Repository

Amplification of Australian heatwaves via local land-atmosphere coupling


Hirsch, AL and Evans, JP and Di Virgilio, G and Perkins-Kirkpatrick, SE and Argueso, D and Pitman, AJ and Carouge, CC and Kala, J and Andrys, J and Petrelli, P and Rockel, B, Amplification of Australian heatwaves via local land-atmosphere coupling, JGR Atmospheres, 124, (24) pp. 13625-13647. ISSN 2169-897X (2019) [Refereed Article]


Copyright Statement

2019. American Geophysical Union. All Rights Reserved.

DOI: doi:10.1029/2019JD030665


Antecedent land surface conditions play a role in the amplification of temperature anomalies experienced during heatwaves by modifying the local partitioning of available energy between sensible and latent heating. Most existing analyses of heatwave amplification from soil moisture anomalies have focused on exceptionally rare events and consider seasonal scale timescales. However, it is not known how much the daily evolution of land surface conditions, both before and during a heatwave, contributes to the intensity and frequency of these extremes. We examine how the daily evolution of land surface conditions preceding a heatwave event contributes to heatwave intensity. We also diagnose why the land surface contribution to Australian heatwaves is not homogeneous due to spatiotemporal variations in land‐atmosphere coupling. We identify two coupling regimes: a land‐driven regime where surface temperatures are sensitive to local variations in sensible heating and an atmosphere‐driven regime where this is not the case. Northern Australia is consistently strongly coupled, where antecedent soil moisture conditions can influence temperature anomalies up to day 4 of a heatwave. For southern Australia, heatwave temperature anomalies are not influenced by antecedent soil moisture conditions due to an atmosphere‐driven coupling regime. Therefore, antecedent land surface conditions have a role in increasing the temperature anomalies experienced during a heatwave only over regions with strong land‐driven coupling. The timescales over which antecedent land surface conditions contribute to Australian heatwaves also vary regionally. Overall, the spatiotemporal variations of land‐atmosphere interactions help determine where and when antecedent land surface conditions contribute to Australian heat extremes.

Item Details

Item Type:Refereed Article
Keywords:heatwave, CORDEX, land‐atmosphere interactions, excess heat factor, two-legged coupling
Research Division:Earth Sciences
Research Group:Climate change science
Research Field:Climate change processes
Objective Division:Environmental Policy, Climate Change and Natural Hazards
Objective Group:Adaptation to climate change
Objective Field:Climate change adaptation measures (excl. ecosystem)
UTAS Author:Petrelli, P (Dr Paola Petrelli)
ID Code:137733
Year Published:2019
Web of Science® Times Cited:25
Deposited By:Oceans and Cryosphere
Deposited On:2020-03-02
Last Modified:2020-04-02
Downloads:11 View Download Statistics

Repository Staff Only: item control page