University of Tasmania
Browse
137727 - Study on Surface Condensate Water Removal.pdf (1.79 MB)

Study on surface condensate water removal and heat transfer performance of a minichannel heat exchanger

Download (1.79 MB)
journal contribution
posted on 2023-05-20, 11:31 authored by Liu, X, Chen, H, Xiaolin WangXiaolin Wang, Gholamreza KefayatiGholamreza Kefayati
The condensate on the surface of the minichannel heat exchanger generated during air cooling substantially reduces the heat transfer performance as it works as an evaporator in the airconditioning system. This has received much attention in scientific communities. In this paper, the effect of operating parameters on the heat transfer performance of a minichannel heat exchanger (MHE) is investigated under an evaporator working condition. An experimental MHE test system is developed for this purpose, and extensive experimental studies are conducted under a wide range of working conditions using the water-cooling method. The inlet air temperature shows a large effect on the overall heat transfer coefficient, while the inlet air relative humidity shows a large effect on the condensate aggregation rate. The airside heat transfer coefficient increases from 66 to 81 W/(m2·K) when the inlet air temperature increases from 30 to 35 °C. While the condensate aggregation rate on the MHE surface increases by up to 1.8 times when the relative humidity increases from 50% to 70%. The optimal air velocity, 2.5 m/s, is identified in terms of the heat transfer rate and airside heat transfer coefficient of the MHE. It is also found that the heat transfer rate and overall heat transfer coefficient increase as the air velocity increases from 1.5 to 2.5 m/s and decreases above 2.5 m/s. Furthermore, a large amount of condensate accumulates on the MHE surface lowering the MHE heat transfer. The inclined installation angle of the MHE in the wind tunnel effectively enhances heat transfer performance on the MHE surface. The experimental results provide useful information for reducing condensate accumulation and enhancing microchannel heat transfer.

History

Publication title

Energies

Volume

13

Issue

5

Article number

1065

Number

1065

Pagination

1-19

ISSN

1996-1073

Department/School

School of Engineering

Publisher

MDPI

Place of publication

Switzerland

Rights statement

Copyright 2020 The Authors. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/

Repository Status

  • Open

Socio-economic Objectives

Energy systems and analysis

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC