University of Tasmania
Browse

File(s) under permanent embargo

Radio galaxy zoo: Knowledge transfer using rotationally invariant self-organizing maps

journal contribution
posted on 2023-05-20, 09:50 authored by Galvin, TJ, Huynh, M, Norris, RP, Wang, XR, Hopkins, E, Wong, OI, Stanislav ShabalaStanislav Shabala, Rudnick, L, Alger, MJ, Polsterer, KL
With the advent of large scale-surveys the manual analysis and classification of individual radio source morphologies is rendered impossible as existing approaches do not scale. The analysis of complex morphological features in the spatial domain is a particularly important task. Here, we discuss the challenges of transferring crowdsourced labels obtained from the Radio Galaxy Zoo project and introduce a proper transfer mechanism via quantile random forest regression. By using parallelized rotation and flipping invariant Kohonen-maps, image cubes of Radio Galaxy Zoo selected galaxies formed from the Faint Images of the Radio Sky at Twenty-cm (FIRST) radio continuum and the Wide-field Infrared Survey Explorer (WISE) infrared all-sky surveys are first projected down to a two-dimensional embedding in an unsupervised way. This embedding can be seen as a discretized space of shapes with the coordinates reflecting morphological features as expressed by the automatically derived prototypes. We find that these prototypes have reconstructed physically meaningful processes across two channel images at radio and infrared wavelengths in an unsupervised manner. In the second step, images are compared with those prototypes to create a heat map, which is the morphological fingerprint of each object and the basis for transferring the user generated labels. These heat maps have reduced the feature space by a factor of 248, and are able to be used as the basis for subsequent machine-learning (ML) methods. Using an ensemble of decision trees we achieve upwards of 85.7% and 80.7% accuracy when predicting the number of components and peaks in an image, respectively, using these heat maps. We also question the currently used discrete classification schema and introduce a continuous scale that better reflects the uncertainty in transition between two classes, caused by sensitivity and resolution limits.

History

Publication title

Publications of the Astronomical Society of the Pacific

Volume

131

Issue

1004

Article number

108009

Number

108009

Pagination

1-23

ISSN

0004-6280

Department/School

School of Natural Sciences

Publisher

Univ Chicago Press

Place of publication

1427 E 60Th St, Chicago, USA, Il, 60637-2954

Rights statement

© 2019. The Astronomical Society of the Pacific

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the physical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC