University of Tasmania
Browse
136697 - South Pacific decadal climate variability and potential predictability.pdf (3.08 MB)

South Pacific decadal climate variability and potential predictability

Download (3.08 MB)
journal contribution
posted on 2023-05-20, 09:37 authored by Lou, J, Neil HolbrookNeil Holbrook, O'Kane, TJ
The South Pacific decadal oscillation (SPDO) characterizes the Southern Hemisphere contribution to the Pacific-wide interdecadal Pacific oscillation (IPO) and is analogous to the Pacific decadal oscillation (PDO) centered in the North Pacific. In this study, upper ocean variability and potential predictability of the SPDO is examined in HadISST data and an atmosphere-forced ocean general circulation model. The potential predictability of the IPO-related variability is investigated in terms of both the fractional contribution made by the decadal component in the South, tropical and North Pacific Oceans and in terms of a doubly integrated first-order autoregressive (AR1) model. Despite explaining a smaller fraction of the total variance, we find larger potential predictability of the SPDO relative to the PDO. We identify distinct local drivers in the western subtropical South Pacific, where nonlinear baroclinic Rossby wave–topographic interactions act to low-pass filter decadal variability. In particular, we show that the Kermadec Ridge in the southwest Pacific enhances the decadal signature more prominently than anywhere else in the Pacific basin. Applying the doubly integrated AR1 model, we demonstrate that variability associated with the Pacific–South American pattern is a critically important atmospheric driver of the SPDO via a reddening process analogous to the relationship between the Aleutian low and PDO in the North Pacific—albeit that the relationship in the South Pacific appears to be even stronger. Our results point to the largely unrecognized importance of South Pacific processes as a key source of decadal variability and predictability.

History

Publication title

Journal of Climate

Volume

32

Issue

18

Pagination

6051-6069

ISSN

0894-8755

Department/School

Institute for Marine and Antarctic Studies

Publisher

Amer Meteorological Soc

Place of publication

45 Beacon St, Boston, USA, Ma, 02108-3693

Rights statement

© Copyright 2019 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. All AMS journals and monograph publications are registered with the Copyright Clearance Center (http://www.copyright.com). Questions about permission to use materials for which AMS holds the copyright can also be directed to permissions@ametsoc.org. Additional details are provided in the AMS Copyright Policy statement, available on the AMS website (http://www.ametsoc.org/CopyrightInformation).

Repository Status

  • Open

Socio-economic Objectives

Climate variability (excl. social impacts)

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC