University of Tasmania
Browse
136646 - GABA operates upstream of H+-ATPase and improves salinity tolerance in Arabidopsis by enabling cytosolic K+ retention and Na+ exclusion.pdf (6.3 MB)

GABA operates upstream of H+-ATPase and improves salinity tolerance in Arabidopsis by enabling cytosolic K+ retention and Na+ exclusion

Download (6.3 MB)
journal contribution
posted on 2023-05-20, 09:29 authored by Su, N, Wu, Q, Chen, J, Svetlana ShabalaSvetlana Shabala, Mithofer, A, Wang, H, Qu, M, Yu, M, Cui, J, Sergey ShabalaSergey Shabala
The non-protein amino acid γ-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to salinity. However, the physiological rationale for this elevation remains elusive. This study compared electrophysiological and whole-plant responses of salt-treated Arabidopsis mutants pop2-5 and gad1,2, which have different abilities to accumulate GABA. The pop2-5 mutant, which was able to overaccumulate GABA in its roots, showed a salt-tolerant phenotype. On the contrary, the gad1,2 mutant, lacking the ability to convert glutamate to GABA, showed oversensitivity to salinity. The greater salinity tolerance of the pop2-5 line was explained by: (i) the role of GABA in stress-induced activation of H+-ATPase, thus leading to better membrane potential maintenance and reduced stress-induced K+ leak from roots; (ii) reduced rates of net Na+ uptake; (iii) higher expression of SOS1 and NHX1 genes in the leaves, which contributed to reducing Na+ concentration in the cytoplasm by excluding Na+ to apoplast and sequestering Na+ in the vacuoles; (iv) a lower rate of H2O2 production and reduced reactive oxygen species-inducible K+ efflux from root epidermis; and (v) better K+ retention in the shoot associated with the lower expression level of GORK channels in plant leaves.

History

Publication title

Journal of Experimental Botany

Volume

70

Issue

21

Pagination

6349-6361

ISSN

0022-0957

Department/School

Tasmanian Institute of Agriculture (TIA)

Publisher

Oxford Univ Press

Place of publication

Great Clarendon St, Oxford, England, Ox2 6Dp

Rights statement

© The Author(s) 2019. Licensed under Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/

Repository Status

  • Open

Socio-economic Objectives

Other plant production and plant primary products not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC