University of Tasmania
Browse
135818 - Accurate approximations for planetary and gravity waves in a polar basin - print version.pdf (216.8 kB)

Accurate approximations for planetary and gravity waves in a polar basin

Download (216.8 kB)
journal contribution
posted on 2023-05-20, 08:21 authored by Andrew BassomAndrew Bassom, Willmott, AJ
The eigenfrequencies of freely propagating divergent barotropic planetary and gravity waves in a spherical polar cap are discussed. The key amplitude equation is derived with the full spherical geometry maintained and leads to a second-order differential equation with coefficients functions of the co-latitude. Previous study of this problem has derived approximations to the requisite frequencies by evaluating these coefficients at some chosen fixed value of the co-latitude thereby reducing the problem to that of a constant coefficient differential equation solved easily using routine methods. Here, we demonstrate that such a simplification can be avoided since the full equation can be solved by standard asymptotic methods based on the latitudinal limit of the polar basin as the natural small parameter. Three-term asymptotic series are developed which are in remarkably good accord with numerical solutions of the full equation.

History

Publication title

Tellus, Series A: Dynamic Meteorology and Oceanography

Volume

71

Article number

1618133

Number

1618133

Pagination

1-7

ISSN

0280-6495

Department/School

School of Natural Sciences

Publisher

Blackwell Munksgaard

Place of publication

35 Norre Sogade, Po Box 2148, Copenhagen, Denmark, Dk-1016

Rights statement

Copyright 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly

Repository Status

  • Open

Socio-economic Objectives

Expanding knowledge in the mathematical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC