eCite Digital Repository

A modified dc chopper for limiting the fault current and controlling the dc-link voltage to enhance fault ride-through capability of doubly-fed induction-generator-based wind turbine

Citation

Naderi, S and Negnevitsky, M and Muttaqi, KM, A modified dc chopper for limiting the fault current and controlling the dc-link voltage to enhance fault ride-through capability of doubly-fed induction-generator-based wind turbine, IEEE Transactions on Industry Applications, 55, (2) pp. 2021-2032. ISSN 0093-9994 (2019) [Refereed Article]

Copyright Statement

Copyright 2018 IEEE

DOI: doi:10.1109/TIA.2018.2877400

Abstract

A simple conventional dc chopper is employed to protect the doubly-fed induction generator (DFIG) from overvoltage; however, it is not capable to keep the transient overcurrent in an acceptable level in stator and rotor sides. Therefore, an effective current-limiting strategy should be incorporated with the dc chopper to improve the fault ride-through capability of the DFIG. In this paper, a modified DC chopper is proposed not only to keep the dc-link voltage in an acceptable range, but also to limit the high-current level in the stator and the rotor sides in a permissible level without incorporating any extra fault-current-limiting strategy. Unlike the conventional dc chopper, in the proposed dc chopper, it is not required to stop rotor-side converter (RSC) switching and employ high-rated-current antiparallel diodes. The proposed modified dc chopper is placed between the dc-link capacitor and the RSC. In the proposed switching strategy of the modified dc chopper, three extra semiconductor switches are included, which are triggered to insert dc chopper resistance either in parallel or series connections with the dc link regarding the dc-link voltage level and the dc-link current level, respectively. Calculation of the dc chopper resistance is discussed. To prove the effectiveness and robustness of the proposed modified dc chopper in terms of both limiting the fault current and controlling the dc-link voltage of the DFIG, symmetrical and asymmetrical grid faults are applied in a power system including the DFIG-based wind turbine modeled in PSCAD/EMTDC so.

Item Details

Item Type:Refereed Article
Keywords:doubly-fed induction generator (DFIG), fault ride through (FRT), modified dc chopper, proposed switching control method, symmetrical and asymmetrical grid faults
Research Division:Engineering
Research Group:Electrical and Electronic Engineering
Research Field:Power and Energy Systems Engineering (excl. Renewable Power)
Objective Division:Energy
Objective Group:Renewable Energy
Objective Field:Wind Energy
UTAS Author:Naderi, S (Dr Seyedbehzad Naderi)
UTAS Author:Negnevitsky, M (Professor Michael Negnevitsky)
ID Code:134863
Year Published:2019
Web of Science® Times Cited:1
Deposited By:Engineering
Deposited On:2019-09-10
Last Modified:2019-10-14
Downloads:0

Repository Staff Only: item control page