University of Tasmania
Browse

File(s) under permanent embargo

Global change effects on plant communities are magnified by time and the number of global change factors imposed

journal contribution
posted on 2023-05-20, 06:28 authored by Komatsu, KJ, Avolio, ML, Lemoine, NP, Isbell, F, Grman, E, Houseman, GR, Koerner, SE, Johnson, DS, Wilcox, KR, Alatalo, JM, Anderson, JP, Aerts, R, Baer, SG, Baldwin, AH, Bates, J, Beierkuhnlein, C, Belote, RT, Blair, J, Bloor, JMG, Bohlen, PJ, Bork, EW, Boughton, EH, Bowman, WD, Britton, AJ, Cahill Jr, JF, Chaneton, E, Chiariello, NR, Cheng, J, Collins, SL, Cornelissen, JHC, Du, G, Eskelinen, A, Firn, J, Foster, B, Gough, L, Gross, K, Hallett, LM, Han, X, Harmens, H, Mark HovendenMark Hovenden, Jagerbrand, A, Jentsch, A, Kern, C, Klanderud, K, Knapp, AK, Kreyling, J, Li, W, Luo, Y, McCulley, RL, McLaren, JR, Megonigal, JP, Morgan, JW, Onipchenko, V, Pennings, SC, Prevey, JS, Price, JN, Reich, PB, Robinson, CH, Russell, FL, Sala, OE, Seabloom, EW, Smith, MD, Soudzilovskaia, NA, Souza, L, Suding, K, Suttle, KB, Svejcar, T, Tilman, D, Tognetti, P, Turkington, R, White, S, Xu, Z, Yahdjian, L, Yu, Q, Zhang, P, Zhang, Y
Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity–ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously.

History

Publication title

Proceedings of the National Academy of Sciences

Volume

116

Issue

36

Pagination

17867-17873

ISSN

0027-8424

Department/School

School of Natural Sciences

Publisher

National Academy of Sciences

Place of publication

United States

Rights statement

Copyright © 2019 the authors

Repository Status

  • Restricted

Socio-economic Objectives

Ecosystem adaptation to climate change; Expanding knowledge in the biological sciences; Expanding knowledge in the environmental sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC