eCite Digital Repository
Graph representation learning with encoding edges
Citation
Li, Q and Cao, Z and Zhong, J and Li, Q, Graph representation learning with encoding edges, Neurocomputing, 361 pp. 29-39. ISSN 0925-2312 (2019) [Refereed Article]
Copyright Statement
©2019 Elsevier B.V. All rights reserved.
DOI: doi:10.1016/j.neucom.2019.07.076
Abstract
Network embedding aims at learning the low dimensional representation of nodes. These representations can be widely used for network mining tasks, such as link prediction, anomaly detection, and classification. Recently, a great deal of meaningful research work has been carried out on this emerging network analysis paradigm. The real-world network contains different size clusters because of the edges with different relationship types. These clusters also reflect some features of nodes, which can contribute to the optimization of the feature representation of nodes. However, existing network embedding methods do not distinguish these relationship types. In this paper, we propose an unsupervised network representation learning model that can encode edge relationship information. Firstly, an objective function is defined, which can learn the edge vectors by implicit clustering. Then, a biased random walk is designed to generate a series of node sequences, which are put into Skip-Gram to learn the low dimensional node representations. Extensive experiments are conducted on several network datasets. Compared with the state-of-art baselines, the proposed method is able to achieve favorable and stable results in multi-label classification and link prediction tasks.
Item Details
Item Type: | Refereed Article |
---|---|
Keywords: | network embedding, feature learning, edge representation, network mining, clustering |
Research Division: | Information and Computing Sciences |
Research Group: | Computer vision and multimedia computation |
Research Field: | Pattern recognition |
Objective Division: | Defence |
Objective Group: | Defence |
Objective Field: | Intelligence, surveillance and space |
UTAS Author: | Cao, Z (Dr Zehong Cao) |
ID Code: | 134278 |
Year Published: | 2019 |
Web of Science® Times Cited: | 5 |
Deposited By: | Information and Communication Technology |
Deposited On: | 2019-08-06 |
Last Modified: | 2020-05-18 |
Downloads: | 0 |
Repository Staff Only: item control page