University of Tasmania
Browse
134072 - Winter storms accelerate the demise of sea ice in the Atlantic sector.pdf (6.84 MB)

Winter storms accelerate the demise of sea ice in the Atlantic sector of the Arctic Ocean

Download (6.84 MB)
journal contribution
posted on 2023-05-20, 05:49 authored by Graham, RM, Itkin, P, Amelie MeyerAmelie Meyer, Sundfjord, A, Spreen, G, Smedsrud, LH, Liston, GE, Cheng, B, Cohen, L, Divine, D, Fer, I, Fransson, A, Gerland, S, Haapala, J, Hudson, SR, Johansson, AM, King, J, Merkouriadi, I, Peterson, AK, Provost, C, Randelhoff, A, Rinke, A, Rosel, A, Sennechael, N, Walden, VP, Duarte, P, Assmy, P, Steen, H, Granskog, MA
A large retreat of sea-ice in the ‘stormy’ Atlantic Sector of the Arctic Ocean has become evident through a series of record minima for the winter maximum sea-ice extent since 2015. Results from the Norwegian young sea ICE (N-ICE2015) expedition, a five-month-long (Jan-Jun) drifting ice station in first and second year pack-ice north of Svalbard, showcase how sea-ice in this region is frequently affected by passing winter storms. Here we synthesise the interdisciplinary N-ICE2015 dataset, including independent observations of the atmosphere, snow, sea-ice, ocean, and ecosystem. We build upon recent results and illustrate the different mechanisms through which winter storms impact the coupled Arctic sea-ice system. These short-lived and episodic synoptic-scale events transport pulses of heat and moisture into the Arctic, which temporarily reduce radiative cooling and henceforth ice growth. Cumulative snowfall from each sequential storm deepens the snow pack and insulates the sea-ice, further inhibiting ice growth throughout the remaining winter season. Strong winds fracture the ice cover, enhance ocean-ice-atmosphere heat fluxes, and make the ice more susceptible to lateral melt. In conclusion, the legacy of Arctic winter storms for sea-ice and the ice-associated ecosystem in the Atlantic Sector lasts far beyond their short lifespan.

History

Publication title

Scientific Reports

Volume

9

Article number

9222

Number

9222

Pagination

1-16

ISSN

2045-2322

Department/School

Institute for Marine and Antarctic Studies

Publisher

Nature Publishing Group

Place of publication

United Kingdom

Rights statement

Copyright 2019 The Authors. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/

Repository Status

  • Open

Socio-economic Objectives

Atmospheric processes and dynamics; Climate variability (excl. social impacts); Expanding knowledge in the earth sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC