eCite Digital Repository
Comparison of inflow and outflow radial air turbines in vented and bidirectional OWC wave energy converters
Citation
Ansarifard, N and Fleming, A and Henderson, A and Kianejad, SS and Chai, S and Orphin, J, Comparison of inflow and outflow radial air turbines in vented and bidirectional OWC wave energy converters, Energy, 182 pp. 159-176. ISSN 0360-5442 (2019) [Refereed Article]
Copyright Statement
Copyright 2019 Elsevier Ltd.
DOI: doi:10.1016/j.energy.2019.06.041
Abstract
This study analyses the aerodynamic performance of two unidirectional-radial-air-turbine configurations; inflow and outflow. These turbines were studied as the Power-Take-Off unit for application on a vented-OWC and a conventional-bidirectional-OWC with a twin-turbine topology, forming four different turbine-OWC configurations. These configurations were evaluated in terms of full-scale power extraction using extrapolated hydrodynamic experimental data of irregular waves for a King Island test site. The power extraction capacity was evaluated by defining a lower and upper bound of power generation under fixed and controlled-RPM schemes and the energy produced in each configuration was then compared against a state-of-the-art twin-rotor turbine. It was found that the difference between these power extraction bounds was lower in case of the outflow turbine, which shows this turbine is less sensitive to RPM variations than the inflow turbine. In addition, due to its lower resistance to the flow in direct mode, the outflow turbine has a smaller full-scale size than the inflow turbine. It was concluded that the outflow turbine provides better efficiency in a twin-turbine-OWC system, while the inflow turbine yields higher conversion efficiency in a vented-OWC system. The vented OWC equipped with a radial inflow turbine can obtain comparable power to the bidirectional OWC system.
Item Details
Item Type: | Refereed Article |
---|---|
Keywords: | air turbines, oscillating water column, design optimization |
Research Division: | Engineering |
Research Group: | Maritime engineering |
Research Field: | Marine engineering |
Objective Division: | Environmental Management |
Objective Group: | Marine systems and management |
Objective Field: | Oceanic processes (excl. in the Antarctic and Southern Ocean) |
UTAS Author: | Ansarifard, N (Ms Nazanin Ansarifard) |
UTAS Author: | Fleming, A (Dr Alan Fleming) |
UTAS Author: | Henderson, A (Associate Professor Alan Henderson) |
UTAS Author: | Kianejad, SS (Mr Seyedsadreddin Kianejadtejenaki) |
UTAS Author: | Chai, S (Professor Shuhong Chai) |
UTAS Author: | Orphin, J (Mr Jarrah Orphin) |
ID Code: | 133872 |
Year Published: | 2019 |
Web of Science® Times Cited: | 14 |
Deposited By: | NC Maritime Engineering and Hydrodynamics |
Deposited On: | 2019-07-12 |
Last Modified: | 2020-03-17 |
Downloads: | 0 |
Repository Staff Only: item control page