eCite Digital Repository

Population-specific responses in physiological rates of Emiliania huxleyi to a broad CO2 range

Citation

Zhang, Y and Bach, LT and Lohbeck, KT and Schulz, KG and Listmann, L and Klapper, R and Riebesell, U, Population-specific responses in physiological rates of Emiliania huxleyi to a broad CO2 range, Biogeosciences, 15 pp. 3691-3701. ISSN 1726-4170 (2018) [Refereed Article]


Preview
PDF
2Mb
  

Copyright Statement

Copyright 2018 the authors. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/

DOI: doi:10.5194/bg-15-3691-2018

Abstract

Although coccolithophore physiological responses to CO2-induced changes in seawater carbonate chemistry have been widely studied in the past, there is limited knowledge on the variability of physiological responses between populations from different areas. In the present study, we investigated the specific responses of growth, particulate organic (POC) and inorganic carbon (PIC) production rates of three populations of the coccolithophore Emiliania huxleyi from three regions in the North Atlantic Ocean (Azores: six strains, Canary Islands: five strains, and Norwegian coast near Bergen: six strains) to a CO2 partial pressure (pCO2) range from 120 to 2630 µatm. Physiological rates of each population and individual strain increased with rising pCO2 levels, reached a maximum and declined thereafter. Optimal pCO2 for growth, POC production rates, and tolerance to low pH (i.e., high proton concentration) was significantly higher in an E. huxleyi population isolated from the Norwegian coast than in those isolated near the Azores and Canary Islands. This may be due to the large environmental variability including large pCO2 and pH fluctuations in coastal waters off Bergen compared to the rather stable oceanic conditions at the other two sites. Maximum growth and POC production rates of the Azores and Bergen populations were similar and significantly higher than that of the Canary Islands population. This pattern could be driven by temperature–CO2 interactions where the chosen incubation temperature (16 C) was slightly below what strains isolated near the Canary Islands normally experience. Our results indicate adaptation of E. huxleyi to their local environmental conditions and the existence of distinct E. huxleyi populations. Within each population, different growth, POC, and PIC production rates at different pCO2 levels indicated strain-specific phenotypic plasticity. Accounting for this variability is important to understand how or whether E. huxleyi might adapt to rising CO2 levels.

Item Details

Item Type:Refereed Article
Keywords:calcification, coccolithophore, phytoplankton, ocean acidification
Research Division:Earth Sciences
Research Group:Oceanography
Research Field:Biological Oceanography
Objective Division:Expanding Knowledge
Objective Group:Expanding Knowledge
Objective Field:Expanding Knowledge in the Earth Sciences
UTAS Author:Bach, LT (Dr Lennart Bach)
ID Code:133680
Year Published:2018
Web of Science® Times Cited:4
Deposited By:Ecology and Biodiversity
Deposited On:2019-07-05
Last Modified:2019-08-12
Downloads:2 View Download Statistics

Repository Staff Only: item control page