eCite Digital Repository

Oxidation state of iron in alteration minerals associated with sandstone-hosted unconformity-related, uranium deposits and apparently barren alteration systems in the Athabasca Basin, Canada: Implications for exploration

Citation

Ng, R and Alexandre, P and Kyser, K and Cloutier, J and Abdu, YA and Hawthorne, FC, Oxidation state of iron in alteration minerals associated with sandstone-hosted unconformity-related, uranium deposits and apparently barren alteration systems in the Athabasca Basin, Canada: Implications for exploration, Journal of Geochemical Exploration, 130 pp. 22-43. ISSN 0375-6742 (2013) [Refereed Article]

Copyright Statement

© 2013 Elsevier B.V. All rights reserved.

DOI: doi:10.1016/j.gexplo.2013.02.009

Abstract

Sandstone-hosted unconformity-related U deposits in the Athabasca Basin at McArthur River Zone 4 and Maurice Bay as well as barren alteration systems at Wheeler River Zone "K" and Spring Point are surrounded by an outer, peripheral zone of illite and an inner, central zone of chlorite alteration. The oxidation state of Fe determined by 57Fe Mössbauer spectroscopy of illite, sudoite, and clinochlore from these systems indicates that pre-ore illite contains mostly Fe3+ (Fe3+/ΣFe = 0.77–1.00), reflecting formation from a predominantly oxidizing basinal fluid. Lower Fe3+/ΣFe ratios are recorded by late pre-ore sudoite and clinochlore occurring near faulted unconformities, consistent with the contribution to the chlorites from reducing basement-derived fluids. Sudoite and clinochlore in the alteration halo of barren systems are more reduced (Fe3+/ΣFe median = 0.3–0.4) than sudoite from mineralized systems (Fe3+/ΣFe median = 0.45–0.55). Sudoite from both systems becomes broadly more oxidized with increasing distance from the fault zone. Variations in the Fe3+/ΣFe ratios of sudoite and clinochlore support a mechanism in which Fe2+ transported by reducing basement-derived fluids is partially oxidized to Fe3+ by basinal fluids prior to incorporation into the chlorite. Thus, scarcity of oxidizing U-bearing basinal fluids available for interaction with reducing basement fluids is a critical factor precluding U mineralization in barren systems. Trends of decreasing Fe3+/ΣFe ratios in sudoite coupled with decreasing 207Pb/206Pb ratios of leachable Pb can be used as geochemical vectors to the sites of potential U mineralization.

Item Details

Item Type:Refereed Article
Keywords:Athabasca Basin, chlorite, iron oxidation state, sandstone-hosted unconformity-related, uranium, central zone, chlorite, critical factors, illite, lead
Research Division:Earth Sciences
Research Group:Geology
Research Field:Stratigraphy (incl. Biostratigraphy and Sequence Stratigraphy)
Objective Division:Energy
Objective Group:Energy Exploration
Objective Field:Uranium Exploration
UTAS Author:Cloutier, J (Mr Jonathan Cloutier)
ID Code:133524
Year Published:2013
Web of Science® Times Cited:3
Deposited By:CODES ARC
Deposited On:2019-06-29
Last Modified:2019-08-12
Downloads:0

Repository Staff Only: item control page