University of Tasmania
Browse
133140 - On the choice of ensemble mean for estimating the forced signal.pdf (1.82 MB)

On the choice of ensemble mean for estimating the forced signal in the presence of internal variability

Download (1.82 MB)
journal contribution
posted on 2023-05-20, 04:16 authored by Frankcombe, LM, England, MH, Jules KajtarJules Kajtar, Mann, ME, Steinman, BA
In this paper we examine various options for the calculation of the forced signal in climate model simulations, and the impact these choices have on the estimates of internal variability. We find that an ensemble mean of runs from a single climate model [a single model ensemble mean (SMEM)] provides a good estimate of the true forced signal even for models with very few ensemble members. In cases where only a single member is available for a given model, however, theSMEMfrom other models is in general out-performed by the scaled ensemble mean from all available climate model simulations [the multimodel ensemble mean (MMEM)]. The scaled MMEM may therefore be used as an estimate of the forced signal for observations. The MMEM method, however, leads to increasing errors further into the future, as the different rates of warming in the models causes their trajectories to diverge. We therefore apply the SMEM method to those models with a sufficient number of ensemble members to estimate the change in the amplitude of internal variability under a future forcing scenario. In line with previous results, we find that on average the surface air temperature variability decreases at higher latitudes, particularly over the ocean along the sea ice margins, while variability in precipitation increases on average, particularly at high latitudes. Variability in sea level pressure decreases on average in the Southern Hemisphere, while in the Northern Hemisphere there are regional differences.

History

Publication title

Journal of Climate

Volume

31

Pagination

5681-5693

ISSN

0894-8755

Department/School

Institute for Marine and Antarctic Studies

Publisher

Amer Meteorological Soc

Place of publication

45 Beacon St, Boston, USA, Ma, 02108-3693

Rights statement

Copyright 2018 American Meteorological Society

Repository Status

  • Open

Socio-economic Objectives

Global effects of climate change (excl. Australia, New Zealand, Antarctica and the South Pacific) (excl. social impacts)

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC