eCite Digital Repository

Dark metabolism: a molecular insight into how the Antarctic sea-ice diatom Fragilariopsis cylindrus survives long-term darkness

Citation

Kennedy, F and Martin, A and Bowman, JP and Wilson, R and McMinn, A, Dark metabolism: a molecular insight into how the Antarctic sea-ice diatom Fragilariopsis cylindrus survives long-term darkness, New Phytologist, 223, (2) pp. 675-691. ISSN 0028-646X (2019) [Refereed Article]


Preview
PDF
3Mb
  

Copyright Statement

Copyright 2019 The Authors Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/

DOI: doi:10.1111/nph.15843

Abstract

  • Light underneath Antarctic sea‐ice is below detectable limits for up to 4 months of the year. The ability of Antarctic sea‐ice diatoms to survive this prolonged darkness relies on their metabolic capability. This study is the first to examine the proteome of a prominent sea‐ice diatom in response to extended darkness, focusing on the protein‐level mechanisms of dark survival.
  • The Antarctic diatom Fragilariopsis cylindrus was grown under continuous light or darkness for 120 d. The whole cell proteome was quantitatively analysed by nano‐LC−MS/MS to investigate metabolic changes that occur during sustained darkness and during recovery under illumination.
  • Enzymes of metabolic pathways, particularly those involved in respiratory processes, tricarboxylic acid cycle, glycolysis, the Entner−Doudoroff pathway, the urea cycle and the mitochondrial electron transport chain became more abundant in the dark. Within the plastid, carbon fixation halted while the upper sections of the glycolysis, gluconeogenesis and pentose phosphate pathways became less active.
  • We have discovered how F. cylindrus utilises an ancient alternative metabolic mechanism that enables its capacity for long‐term dark survival. By sustaining essential metabolic processes in the dark, F. cylindrus retains the functionality of the photosynthetic apparatus, ensuring rapid recovery upon re‐illumination.
  • Item Details

    Item Type:Refereed Article
    Keywords:Antarctic, dark survival, Fragilariopsis cylindrus, metabolism, proteomics, sea-ice algae
    Research Division:Biological Sciences
    Research Group:Biochemistry and Cell Biology
    Research Field:Proteomics and Intermolecular Interactions (excl. Medical Proteomics)
    Objective Division:Expanding Knowledge
    Objective Group:Expanding Knowledge
    Objective Field:Expanding Knowledge in the Biological Sciences
    UTAS Author:Kennedy, F (Mr Fraser Kennedy)
    UTAS Author:Martin, A (Dr Andrew Martin)
    UTAS Author:Bowman, JP (Associate Professor John Bowman)
    UTAS Author:Wilson, R (Dr Richard Wilson)
    UTAS Author:McMinn, A (Professor Andrew McMinn)
    ID Code:132747
    Year Published:2019
    Deposited By:Ecology and Biodiversity
    Deposited On:2019-05-20
    Last Modified:2019-07-10
    Downloads:0

    Repository Staff Only: item control page