University of Tasmania
Browse
132396 - Stable states in soil chemistry persist in eucalypt woodland restorations.pdf (595.24 kB)

Stable states in soil chemistry persist in eucalypt woodland restorations

Download (595.24 kB)
journal contribution
posted on 2023-05-20, 03:20 authored by Macdonald, S, Tanya BaileyTanya Bailey, Mark HuntMark Hunt, Davidson, N, Gregory JordanGregory Jordan

Aim: To assess whether restoration of dry eucalypt-dominated plant communities on ex-pasture sites is constrained by soil characteristics.

Location: Central Tasmania, Australia.

Methods: We use nutrient status to test recovery trajectories of soils within eucalypt woodland restorations established on ex-pasture sites. Eucalyptus trees within these sites have been successfully established but understorey plant communities have had negligible recovery. Soils from restoration sites, aged from 3 to 22Â years, were contrasted with those from two reference ecotypes: established pastures and native eucalypt woodlands presumed to be similar to that originally replaced by the pastures. We hypothesized that (a) total soil carbon to nitrogen ratios (C:N) would be substantially higher in forest soils than in pasture soils; (b) soil nutrient levels would be lower in forest sites than within pasture sites; and (c) if restoration soils were recovering they should fit between these continuums according to age of planting.

Results: Woodland and pasture reference soils were highly constrained in soil C:N and conformed to expectations. However, ex-pasture restoration sites retained the characteristically low C:N and high nutrient levels of pasture soils, in particular total N. They also failed to demonstrate a transformational effect with age of planting.

Conclusions: The results suggest that both restoration interventions and natural processes had not sufficiently disrupted existing below-ground systems within the given time frame. Such an intractable stable state within the soil system highlights the need within restoration practice for an increased emphasis on soil ecological transformation. Improving and implementing practices aimed at driving soil change may assist a timelier reassembly of complex native ecosystems. This study also shows that soil C:N ratios may provide a cheap and simple means of identifying soil constraints on restoration.

History

Publication title

Applied Vegetation Science

Volume

22

Pagination

105-114

ISSN

1402-2001

Department/School

School of Natural Sciences

Publisher

Opulus Press Uppsala Ab

Place of publication

Gamla Vagen 40, Grangarde, Sweden, S-770 13

Rights statement

© 2018 International Association for Vegetation Science. This is the peer reviewed version of the following article: Macdonald, SJ and Bailey, T and Hunt, M and Davidson, N and Jordan, GJ, Stable states in soil chemistry persist in eucalypt woodland restorations, Applied Vegetation Science, 22, (1) pp. 105-114. ISSN 1402-2001 (2019), which has been published in final form at https://doi.org/10.1111/avsc.12404 This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Repository Status

  • Restricted

Socio-economic Objectives

Evaluation, allocation, and impacts of land use