eCite Digital Repository

Ancient DNA reveals complexity in the evolutionary history and taxonomy of the endangered Australian brush-tailed bettongs (Bettongia: Marsupialia: Macropodidae: Potoroinae)

Citation

Haouchar, D and Pacioni, C and Haile, J and McDowell, MC and Baynes, A and Phillips, MJ and Austin, JJ and Pope, LC and Bunce, M, Ancient DNA reveals complexity in the evolutionary history and taxonomy of the endangered Australian brush-tailed bettongs (Bettongia: Marsupialia: Macropodidae: Potoroinae), Biodiversity and Conservation, 25, (14) pp. 2907-2927. ISSN 0960-3115 (2016) [Refereed Article]

DOI: doi:10.1007/s10531-016-1210-y

Abstract

The three surviving ‘brush-tailed’ bettong species - Bettongia gaimardi (Tasmania), B. tropica (Queensland) and B. penicillata (Western Australia), are all classified as threatened or endangered. These macropodids are prolific diggers and are recognised as important ‘ecosystem engineers’ that improve soil quality and increase seed germination success. However, a combination of introduced predators, habitat loss and disease has seen populations become increasingly fragmented and census numbers decline. Robust phylogenies are vital to conservation management, but the extent of extirpation and fragmentation in brush-tailed bettongs is such that a phylogeny based upon modern samples alone may provide a misleading picture of former connectivity, genetic diversity and species boundaries. Using ancient DNA isolated from fossil bones and museum skins, we genotyped two mitochondrial DNA (mtDNA) genes: cytochrome b (266 bp) and control region (356 bp). These ancient DNA data were combined with a pre-existing modern DNA data set on the historically broadly distributed brush-tailed bettongs (∼300 samples total), to investigate their phylogenetic relationships. Molecular dating estimates the most recent common ancestor of these bettongs occurred c. 2.5 Ma (million years ago), which suggests that increasing aridity likely shaped their modern-day distribution. Analyses of the concatenated mtDNA sequences of all brush-tailed bettongs generated five distinct and well-supported clades including: a highly divergent Nullarbor form (Clade I), B. tropica (Clade II), B. penicillata (Clades III and V), and B. gaimardi (Clade IV). The generated phylogeny does not reflect current taxonomy and the question remains outstanding of whether the brush-tailed bettongs consisted of several species, or a single widespread species. The use of nuclear DNA markers (single nucleotide polymorphisms and/or short tandem repeats) will be needed to better inform decisions about historical connectivity and the appropriateness of ongoing conservation measures such as translocations and captive breeding.

Item Details

Item Type:Refereed Article
Research Division:Earth Sciences
Research Group:Geology
Research Field:Palaeontology (incl. Palynology)
Objective Division:Environment
Objective Group:Climate and Climate Change
Objective Field:Climate Variability (excl. Social Impacts)
UTAS Author:McDowell, MC (Dr Matthew McDowell)
ID Code:132379
Year Published:2016
Web of Science® Times Cited:1
Deposited By:Plant Science
Deposited On:2019-05-06
Last Modified:2019-05-07
Downloads:0

Repository Staff Only: item control page