eCite Digital Repository
Systematic functional characterization of putative zinc transport genes and identification of zinc toxicosis phenotypes in Drosophila melanogaster
Citation
Lye, JC and Richards, CD and Dechen, K and Paterson, D and De Jonge, MD and Howard, DL and Warr, CG and Burke, R, Systematic functional characterization of putative zinc transport genes and identification of zinc toxicosis phenotypes in Drosophila melanogaster, Journal of Experimental Biology, 215, (18) pp. 3254-3265. ISSN 0022-0949 (2012) [Refereed Article]
Abstract
The heavy metal zinc is an essential component of the human diet and is incorporated as a structural component in up to 10% of all mammalian proteins. The physiological importance of zinc homeostasis at the cellular level and the molecular mechanisms involved in this process have become topics of increasing interest in recent years. We have performed a systematic functional characterization of the majority of the predicted Drosophila Zip (zinc/iron regulated transporter-related protein) and ZnT genes, using the Gal4-UAS system to carry out both ubiquitous and targeted over-expression and suppression studies for 13 of the 17 putative zinc transport genes identified to date. We found that six of these 13 genes may be essential for fly viability and that three of the remaining seven demonstrate over-expression phenotypes. Our findings reaffirm the previously proposed function of dZnT63C (CG17723: FBgn005432) as an important zinc efflux protein and indicate that the fly homolog of hZip1, dZip42C.1 (CG9428: FBgn0033096), is a strong zinc importer in Drosophila. By combining over-expression of dZip42C.1 with suppression of dZnT63C we were able to produce easily identifiable zinc toxicosis phenotypes, which can be rescued or worsened by modifying dietary zinc content. Our findings show that a genetically based zinc toxicosis situation can be therapeutically treated or exacerbated by modifications to the diet, providing a sensitized background for future, more detailed studies of Zip/ZnT function.
Item Details
Item Type: | Refereed Article |
---|---|
Keywords: | <i>drosophila melanogaste</r, DZip42C.1, DZnT63C, zinc, zinc transport, zip, ZnT, carrier protein, Drosophila protein, zinc, zinc-binding protein, animal, apoptosis, article, biology, cytology, diet, Drosophila melanogaster, eye |
Research Division: | Biological Sciences |
Research Group: | Biochemistry and cell biology |
Research Field: | Cell metabolism |
Objective Division: | Expanding Knowledge |
Objective Group: | Expanding knowledge |
Objective Field: | Expanding knowledge in the biological sciences |
UTAS Author: | Warr, CG (Professor Coral Warr) |
ID Code: | 131864 |
Year Published: | 2012 |
Web of Science® Times Cited: | 39 |
Deposited By: | Office of the School of Medicine |
Deposited On: | 2019-04-10 |
Last Modified: | 2019-04-10 |
Downloads: | 0 |
Repository Staff Only: item control page