eCite Digital Repository

Systematic functional characterization of putative zinc transport genes and identification of zinc toxicosis phenotypes in Drosophila melanogaster


Lye, JC and Richards, CD and Dechen, K and Paterson, D and De Jonge, MD and Howard, DL and Warr, CG and Burke, R, Systematic functional characterization of putative zinc transport genes and identification of zinc toxicosis phenotypes in Drosophila melanogaster, Journal of Experimental Biology, 215, (18) pp. 3254-3265. ISSN 0022-0949 (2012) [Refereed Article]

DOI: doi:10.1242/jeb.069260


The heavy metal zinc is an essential component of the human diet and is incorporated as a structural component in up to 10% of all mammalian proteins. The physiological importance of zinc homeostasis at the cellular level and the molecular mechanisms involved in this process have become topics of increasing interest in recent years. We have performed a systematic functional characterization of the majority of the predicted Drosophila Zip (zinc/iron regulated transporter-related protein) and ZnT genes, using the Gal4-UAS system to carry out both ubiquitous and targeted over-expression and suppression studies for 13 of the 17 putative zinc transport genes identified to date. We found that six of these 13 genes may be essential for fly viability and that three of the remaining seven demonstrate over-expression phenotypes. Our findings reaffirm the previously proposed function of dZnT63C (CG17723: FBgn005432) as an important zinc efflux protein and indicate that the fly homolog of hZip1, dZip42C.1 (CG9428: FBgn0033096), is a strong zinc importer in Drosophila. By combining over-expression of dZip42C.1 with suppression of dZnT63C we were able to produce easily identifiable zinc toxicosis phenotypes, which can be rescued or worsened by modifying dietary zinc content. Our findings show that a genetically based zinc toxicosis situation can be therapeutically treated or exacerbated by modifications to the diet, providing a sensitized background for future, more detailed studies of Zip/ZnT function.

Item Details

Item Type:Refereed Article
Keywords:<i>drosophila melanogaste</r, DZip42C.1, DZnT63C, zinc, zinc transport, zip, ZnT, carrier protein, Drosophila protein, zinc, zinc-binding protein, animal, apoptosis, article, biology, cytology, diet, Drosophila melanogaster, eye
Research Division:Biological Sciences
Research Group:Biochemistry and cell biology
Research Field:Cell metabolism
Objective Division:Expanding Knowledge
Objective Group:Expanding knowledge
Objective Field:Expanding knowledge in the biological sciences
UTAS Author:Warr, CG (Professor Coral Warr)
ID Code:131864
Year Published:2012
Web of Science® Times Cited:39
Deposited By:Office of the School of Medicine
Deposited On:2019-04-10
Last Modified:2019-04-10

Repository Staff Only: item control page