eCite Digital Repository

Ocean futures under ocean acidification, marine protection, and changing fishing pressures explored using a worldwide suite of ecosystem models


Olsen, E and Kaplan, IC and Ainsworth, C and Fay, G and Gaichas, S and Gamble, R and Girardin, R and Eide, CH and Ihde, TF and Morzaria-Luna, HN and Johnson, KF and Savina-Rolland, M and Townsend, H and Weijerman, M and Fulton, EA and Link, JS, Ocean futures under ocean acidification, marine protection, and changing fishing pressures explored using a worldwide suite of ecosystem models, Frontiers in Marine Science, 5, (MAR) Article 64. ISSN 2296-7745 (2018) [Refereed Article]


Copyright Statement

Copyright 2018 Olsen, Kaplan, Ainsworth, Fay, Gaichas, Gamble, Girardin, Eide, Ihde, Morzaria-Luna, Johnson, Savina-Rolland, Townsend, Weijerman, Fulton and Link. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

DOI: doi:10.3389/fmars.2018.00064


Ecosystem-based management (EBM) of the ocean considers all impacts on and uses of marine and coastal systems. In recent years, there has been a heightened interest in EBM tools that allow testing of alternative management options and help identify tradeoffs among human uses. End-to-end ecosystem modeling frameworks that consider a wide range of management options are a means to provide integrated solutions to the complex ocean management problems encountered in EBM. Here, we leverage the global advances in ecosystem modeling to explore common opportunities and challenges for ecosystem-based management, including changes in ocean acidification, spatial management, and fishing pressure across eight Atlantis ( end-to-end ecosystem models. These models represent marine ecosystems from the tropics to the arctic, varying in size, ecology, and management regimes, using a three-dimensional, spatially-explicit structure parametrized for each system. Results suggest stronger impacts from ocean acidification and marine protected areas than from altering fishing pressure, both in terms of guild-level (i.e., aggregations of similar species or groups) biomass and in terms of indicators of ecological and fishery structure. Effects of ocean acidification were typically negative (reducing biomass), while marine protected areas led to both "winners" and "losers" at the level of particular species (or functional groups). Changing fishing pressure (doubling or halving) had smaller effects on the species guilds or ecosystem indicators than either ocean acidification or marine protected areas. Compensatory effects within guilds led to weaker average effects at the guild level than the species or group level. The impacts and tradeoffs implied by these future scenarios are highly relevant as ocean governance shifts focus from single-sector objectives (e.g., sustainable levels of individual fished stocks) to taking into account competing industrial sectors' objectives (e.g., simultaneous spatial management of energy, shipping, and fishing) while at the same time grappling with compounded impacts of global climate change (e.g., ocean acidification and warming).

Item Details

Item Type:Refereed Article
Keywords:ecosystem modelling, fisheries, climate change
Research Division:Environmental Sciences
Research Group:Ecological applications
Research Field:Ecosystem function
Objective Division:Animal Production and Animal Primary Products
Objective Group:Fisheries - wild caught
Objective Field:Wild caught fin fish (excl. tuna)
UTAS Author:Fulton, EA (Dr Elizabeth Fulton)
ID Code:131666
Year Published:2018
Web of Science® Times Cited:37
Deposited By:Directorate
Deposited On:2019-03-28
Last Modified:2019-05-03
Downloads:38 View Download Statistics

Repository Staff Only: item control page