eCite Digital Repository

Hematocrit and blood osmolality in developing chicken embryos (Gallus gallus): In vivo and in vitro regulation


Andrewartha, SJ and Tazawa, H and Burggren, WW, Hematocrit and blood osmolality in developing chicken embryos (Gallus gallus): In vivo and in vitro regulation, Respiratory Physiology and Neurobiology, 179, (2-3) pp. 142-150. ISSN 1569-9048 (2011) [Refereed Article]

Copyright Statement

Copyright 2011 Elsevier B.V.

DOI: doi:10.1016/j.resp.2011.07.010


Hematocrit (Hct) regulation is a complex process involving potentially many factors. How such regulation develops in vertebrate embryos is still poorly understood. Thus, we investigated the role of blood pH in the regulation of Hct across developmental time in chicken embryos. We hypothesized that blood pH alterations in vitro (i.e., in a test tube) would affect Hct far more than in vivo because of in vivo compensatory regulatory processes for Hct. Large changes in Hct (through mean corpuscular volume (MCV)) and blood osmolality (Osm) occur when the blood was exposed to varying ambient temperatures (Ta's) and PCO2 in vitro alongside an experimentally induced blood pH change from ∼7.3 to 8.2. However, homeostatic regulatory mechanisms apparently limited these alterations in vivo. Changes in blood pH in vitro were accompanied by hydration or dehydration of red blood cells depending on embryonic age, resulting in changes in Hct that also were specific to developmental stage, due likely to initial blood gas and [HCO3-]v values. Significant linear relationships between Hct and pH (Hct/ΔpH=−21.4%/(pH unit)), Hct and [HCO3-] (ΔHct/Δ[HCO3-]=1.6%/(mEqL-1)) and the mean buffer value (Δ[HCO3-]/ΔpH-=−13.4 (mEqL-1)/(pH unit)) demonstrate that both pH and [HCO3-] likely play a role in the regulation of Hct through MCV at least in vitro. Low Ta (24C) resulted in relatively large changes in pH with small changes in Hct and Osm in vitro with increased Ta (42C) conversely resulting in larger changes in both Hct and Osm. In vivo exposure to altered Ta caused age-dependent changes in Hct, demonstrating a trend towards increased Hct at higher Ta. Further, exposing embryos to a gas mixture where PCO2 = 5.1 kPa for >4h period at Ta of 37 or 42C also did not elicit a change in Hct or Osm. Presumably, homeostatic mechanisms ensured that in vivo Hct was stable during a 46h temperature and/or hypercapnic stress. Thus, although blood pH decreases (induced by acute Ta increase and exposure to CO2) increase MCV and, consequently, Hct in vitro, homeostatic mechanisms operating in vivo are adequate to ensure that such environmental perturbations have little effect in vivo.

Item Details

Item Type:Refereed Article
Keywords:chicken embryo, hematocrit, blood osmolality, blood gas variables: pH and [HCO3−], hypercapnia, ambient temperature
Research Division:Biological Sciences
Research Group:Zoology
Research Field:Animal developmental and reproductive biology
Objective Division:Expanding Knowledge
Objective Group:Expanding knowledge
Objective Field:Expanding knowledge in the biological sciences
UTAS Author:Andrewartha, SJ (Dr Sarah Andrewartha)
ID Code:131600
Year Published:2011
Web of Science® Times Cited:11
Deposited By:Agriculture and Food Systems
Deposited On:2019-03-26
Last Modified:2019-05-23

Repository Staff Only: item control page