University of Tasmania
Browse

File(s) under permanent embargo

Childhood predictors of lung function trajectories and future COPD risk: a prospective cohort study from the first to the sixth decade of life

journal contribution
posted on 2023-05-20, 01:38 authored by Bui, DS, Lodge, CJ, John BurgessJohn Burgess, Lowe, AJ, Perret, J, Bui, MQ, Bowatte, G, Gurrin, L, Johns, DP, Thompson, BR, Hamilton, GS, Frith, PA, James, AL, Thomas, PS, Jarvis, D, Svanes, C, Russell, M, Morrison, SC, Feather, I, Allen, KJ, Wood-Baker, R, Hopper, J, Giles, GG, Abramson, MJ, Eugene WaltersEugene Walters, Matheson, MC, Dharmage, SC

Background: Lifetime lung function is related to quality of life and longevity. Over the lifespan, individuals follow different lung function trajectories. Identification of these trajectories, their determinants, and outcomes is important, but no study has done this beyond the fourth decade.

Methods: We used six waves of the Tasmanian Longitudinal Health Study (TAHS) to model lung function trajectories measured at 7, 13, 18, 45, 50, and 53 years. We analysed pre-bronchodilator FEV 1 z-scores at the six timepoints using group-based trajectory modelling to identify distinct subgroups of individuals whose measurements followed a similar pattern over time. We related the trajectories identified to childhood factors and risk of chronic obstructive pulmonary disease (COPD) using logistic regression, and estimated population-attributable fractions of COPD.

Findings: Of the 8583 participants in the original cohort, 2438 had at least two waves of lung function data at age 7 years and 53 years and comprised the study population. We identified six trajectories: early below average, accelerated decline (97 [4%] participants); persistently low (136 [6%] participants); early low, accelerated growth, normal decline (196 [8%] participants); persistently high (293 [12%] participants); below average (772 [32%] participants); and average (944 [39%] participants). The three trajectories early below average, accelerated decline; persistently low; and below average had increased risk of COPD at age 53 years compared with the average group (early below average, accelerated decline: odds ratio 35·0, 95% CI 19·5–64·0; persistently low: 9·5, 4·5–20·6; and below average: 3·7, 1·9–6·9). Early-life predictors of the three trajectories included childhood asthma, bronchitis, pneumonia, allergic rhinitis, eczema, parental asthma, and maternal smoking. Personal smoking and active adult asthma increased the impact of maternal smoking and childhood asthma, respectively, on the early below average, accelerated decline trajectory.

Interpretation: We identified six potential FEV 1 trajectories, two of which were novel. Three trajectories contributed 75% of COPD burden and were associated with modifiable early-life exposures whose impact was aggravated by adult factors. We postulate that reducing maternal smoking, encouraging immunisation, and avoiding personal smoking, especially in those with smoking parents or low childhood lung function, might minimise COPD risk. Clinicians and patients with asthma should be made aware of the potential long-term implications of non-optimal asthma control for lung function trajectory throughout life, and the role and benefit of optimal asthma control on improving lung function should be investigated in future intervention trials.

History

Publication title

The Lancet Respiratory Medicine

Volume

6

Issue

7

Pagination

535-544

ISSN

2213-2600

Department/School

Tasmanian School of Medicine

Publisher

The Lancet Publishing Group

Place of publication

United Kingdom

Rights statement

Copyright 2018 Elsevier Ltd.

Repository Status

  • Restricted

Socio-economic Objectives

Clinical health not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC