eCite Digital Repository

Loads and response of a tension leg platform wind turbine with non-rotating blades: An experimental study

Citation

Murfet, T and Abdussamie, N, Loads and response of a tension leg platform wind turbine with non-rotating blades: An experimental study, Journal of Marine Science and Engineering, 7, (3) Article 56. ISSN 2077-1312 (2019) [Refereed Article]


Preview
PDF
2Mb
  

Copyright Statement

Copyright 2019 The Authors. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/

DOI: doi:10.3390/jmse7030056

Abstract

This paper describes model testing of a Tension Leg Platform Wind Turbine (TLPWT) with non-rotating blades to better understand its motion and tendon responses when subjected to combined wind and unidirectional regular wave conditions. The TLPWT structure is closely based on the National Renewable Energy Laboratory (NREL) 5 MW concept. Multiple free decay tests were performed to evaluate the natural periods of the model in the key degrees of freedom, whilst Response Amplitude Operators (RAOs) were derived to show the motion and tendon characteristics. The natural periods in surge and pitch motions evaluated from the decay tests had a relatively close agreement to the theoretical values. Overall, the tested TLPWT model exhibited typical motion responses to that of a generalised TLP with significant surge offsets along with stiff heave and pitch motions. The maximum magnitudes for the RAOs of surge motion and all tendons occurred at the longest wave period of 1.23 s (~13.0 s at full-scale) tested in this study. From the attained results, there was evidence that static wind loading on the turbine structure had some impact on the motions and tendon response, particularly in the heave direction, with an average increase of 13.1% in motion amplitude for the tested wind conditions. The wind had a negligible effect on the surge motion and slightly decreased the tendon tensions in all tendons. The results also showed the set-down magnitudes amounting to approximately 25% of the offset. Furthermore, the waves are the dominant factor contributing to the set-down of the TLPWT, with a minimal contribution from the static wind loading. The results of this study could be used for calibrating numerical tools such as CFD codes.

Item Details

Item Type:Refereed Article
Keywords:offshore wind; tension leg platforms; loads and response; model testing
Research Division:Engineering
Research Group:Maritime Engineering
Research Field:Ocean Engineering
Objective Division:Energy
Objective Group:Renewable Energy
Objective Field:Wind Energy
UTAS Author:Murfet, T (Mr Timothy Murfet)
UTAS Author:Abdussamie, N (Dr Nagi Abdussamie)
ID Code:131062
Year Published:2019
Web of Science® Times Cited:1
Deposited By:NC Maritime Engineering and Hydrodynamics
Deposited On:2019-02-28
Last Modified:2019-04-24
Downloads:2 View Download Statistics

Repository Staff Only: item control page